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Abstract. The article contains prove that Estimate Flow Rate (EFR) 
method of hydraulic network flow rate distribution analysis described in [1-
3], converges from any initial point for some class of hydraulic networks 
with odd functions of losses on edges. Method modification was proposed 
which provide such convergence for more wide class of hydraulic networks. 

The iterative method of “Estimated Flow Rate” (or EFR), described in article [1], was 
proposed by Duginov several decades ago and was used successfully from 1972 [2, 3] for 
hydraulic and other network analysis. 

Various methods of solving classical hydraulic network flow rate distribution problem 
have been investigating already during almost a century, starting from Lobachev – Hardy 
Cross method [4, 5]. The most popular in the last period are different variants of iterative 
methods based on Newton-Raphson algorithm, which use derivative linearization of 
hydraulic network equations in different forms: methods of Linear Theory (LT) [8], Loop 
Flow (LP) [6, 7, 9, 10], Nodal Adjustment method (NA) [6, 7, 11, 12], and Global Gradient 
Algorithm (GGA) [13, 14]. The review of these methods can be found in [15, 16], where 
their uniform nature is shown. Another recent variant of such methods is Reformulated Co-
Tree Method (RCTM) [17], combining GGA and LP and more effective in some cases (but 
demanding topological analysis of the network). Further efforts to make LP more effective 
can be found also in [18]. The speed of convergence of these methods is usually quite high, 
but convergence can significantly depend on initial point. 

In the same time some “non-Newtonian” approaches were considered based on chord or 
secant network equations linearization. Such methods were originally proposed in [19, 20] 
and then in [7], and also mentioned in [21]. Systematic research of such methods was done 
in article [22]. Note that many of such methods found out to be very efficient. 

EFR method also belongs to chord linearization type of methods and has linear speed of 
convergence, but this speed is quite good (especially for flow rates) – usually in practice no 
more than 10 iterations are required. The biggest advantage of the method is its high stability 
and practical independency of initial point. As many years of usage experience showed, EFR 
allows to set practically any initial flow rate and node pressure values, and number of 
iterations is almost independent of these values. This advantage of EFR allows to apply it 
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also in combination with other methods (for example GGA) to get better initial 
approximation for them. 

However so far there was no formal mathematical prove of EFR convergence, and no 
enough understanding of the nature of its stability. This article fills this gap. It found out that 
to do this EFR should be considered in frame of optimization problem. 

1. Problem definition and EFR method 
Let ܩ - directed connected graph with ܰ nodes (node set ܸ) and ܰா edges (edge set ܧ). 

Well known hydraulic network equations of classical flow rate distribution problem 
(CFDP) can be written as 

்ܲܣ  =  (1) (ܺ)ܨ
ܺܣ  = ܳ (2) 

Where ܣ – incidence matrix of graph G, ܺ – vector of mass flow rates, ܳ – node mass 
inflow vector, ܲ  – vector of node potentials (pressures), ܨ(ܺ) – vector function, each element 
of which is function of losses on edges. 

It is supposed that on node subset ܸ  node pressures ܲ௫ are set (in ܰ > 0 nodes), and 
in remaining ܰொ nodes (subset ொܸ) node inflows ܳ௫ are set, and the problem is to find such 
node pressures ௩ܲ in ܰொ nodes (and correspondently inflows ܳ௩  in ܰ node and edge 
flow rates ܺ), which satisfy equations (1), (2). 

The idea of EFR is to replace on each iteration original equations (1), (2) by equations 
with ܨ(ܺ) replaced by linear vector ܨாிோ(ܺ) = ாிோܺܣ + ܨ ,ܨ =  correspondent to ,(0)ܨ
chord of function ܨ(ܺ) (or invert to ܨ function ߮), connected point of current iteration and 
point of zero flow rate. 

So on i-th iteration the following system of linear equations is solved 
()்ܲܣ  = ாிோܣ

() ܺ() +   (3)ܨ
()ܺܣ  = ܳ (4) 

Here elements of diagonal matrix ܣாிோ
() 	(which can be called edge linear resistances) on 

each iteration are calculated as  
 ܽாிோ

() = ൫ݕ
(ିଵ) − ൯ܨ ܺாிோ

(ିଵ)ൗ , (5) 
where «estimated flow rate» Xୖ୨

(୧ିଵ) = ߮൫ݕ
(ିଵ)൯, ܻ(ିଵ) =  .(ିଵ)்ܲܣ

In the seldom case when flow rate on the edge equals zero, and formula (5) is undefined, 
ܽாிோ
()  is set as ܽாிோ

() =
ௗிೕ
ௗೕ

(0), where derivative is calculated analytically or numerically 

(in order this derivative be non-zero, laminar type of the flow in this case should be 
considered [24]). 

As ܨ function usually is monotonic and smooth enough [24], effective calculation of 
inverse function on every iteration is not a problem, as there are now known many highly 
effective root finding algorithms for solving such problems. 

Note that on initial step it is possible (and often more effective) to set some reasonable 
edge flow rates Xୖ

()  instead of node pressures, as in (5) we can set ܻ() = ൫Xୖܨ
() ൯. 

Note also that on each iteration original network is replaced by linear one with similar 
edge properties – passive edges remain passive, and active edges have the same head at zero 
flow rate - so for solutions on each iteration the same theorems (proven in [25]) for network 
solutions in restricted node pressure space is applied, as for original network problem, and 
already after the first iteration node pressure values are usually close enough to the solution, 
and this minimizes risk of occasional «blowout» of node pressures during iterations into zone 
where the model is not adequate (fluid is boiling or condensing, or choked flow occurs). This 
is one of the reasons of EFR is so stable to initial point selection. 
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2. Convergence of EFR method 
We will prove EFR method convergence of hydraulic networks with edge loss functions 
satisfying the following conditions: 

1) ݂ ∈  ;i.e. defined and continuous on ℝ ,[∞+,∞−]ܥ
2) ݂ 	strictly	monotonically	increases;	
3) ݂ → −∞	for	ݔ → −∞	and	 ݂ → +∞	for	ݔ → +∞;	
4) Functions	ܽாிோ(ݔ) = [ ݂(ݔ) − ݂(0)] ⁄ݔ 	monotonically	increase	for	ݔ > 0;	
5) The	derivative	of	 ݂ 	at	ݔ = 0	exists	and	positive:	 ݂ᇱ(0) > 0;	
6) Functions	 ݂(ݔ) − ݂(0)	are	odd.	
Conditions 1-3 have evident physical sense and coincide with conditions on edge 

functions, for which existence and uniqueness of CFDP solution were proved [23]. 
Condition 4 is weak variant of convex condition of ݂ for ݔ > 0 and practically always 

is satisfied. If ݂ for ݔ > 0 are convex, this condition is satisfied. 
Condition 5 (at least in the part of left-hand and right-hand derivatives existence) also has 

clear physical sense – edge resistance in the region of laminar flow should be correctly taken 
into account – and always can be satisfied by adding corresponding linear part into edge loss 
function. 

 
Fig. 1 

In the same time condition 6 not always can be satisfied. It means in fact that behavior of 
edge is independent of flow direction. In most cases this is right – but if the edge includes 
reducers, pumps or other elements with different behavior for different directions of the flow, 
condition 6 for such edge will not be satisfied. In next section we will consider how EFR can 
be modified to drop this condition. 

Note that conditions 1-6 imply that functions ܽாிோ(ݔ) (also defined in 0 as ܽாிோ(0) =
݂
ᇱ(0)) are continuous on ℝ, even and increase monotonically for ݔ ≥ 0. 
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Also conditions 4-6 imply that for ∀ݔ∗ and correspondent ா݂ிோ
∗  the following (ݔ)

inequalities are valid (Fig.1) 
݂(ݔ) ≥ ݂(0) + ܽாிோ(ݔ∗)ݔ = ா݂ிோ

∗ ݔ for (ݔ) ≥ |∗ݔ|− and |∗ݔ| ≤ ݔ ≤
0 (6) 

݂(ݔ) ≤ ݂(0) + ܽாிோ(ݔ∗)ݔ = ா݂ிோ
∗ ݔ for (ݔ) ≤ and 0 |∗ݔ|− ≤ ݔ ≤

 (7) |∗ݔ|
For inverse functions ߮ = ݂

ିଵ and ߮ாிோ∗ = ா݂ிோ
∗ିଵ  the following correspondent 

inequalities are valid for ݕ∗ = ݂(ݔ∗) 
߮(ݕ) ≤ ߮ாிோ∗ ݕ for (ݕ) − ݂(0) ≥ ∗ݕ| − ݂(0)| and −|ݕ∗ − ݂(0)| ≤ ݕ − ݂(0) ≤

0 (8) 
߮(ݕ) ≥ ߮ாிோ∗ for 0 (ݕ) ≤ ݕ − ݂(0) ≤ ∗ݕ| − ݂(0)| and ݕ − ݂(0) ≤ ∗ݕ|− −

݂(0)| (9) 
Let’s consider mapping ܯாிோ:ℝேೂ → ℝேೂ, which maps arbitrary node pressure vector 

௩ܲ in nodes ொܸ, to node vector obtained by solving equations (3), (4). The mapping ܯாிோ 
is continuous (as functions ܽாிோ(ݔ), which are coefficients of nonsingular linear system 
(3), (4), are continuous) and has the only fixed point, which correspond to existing and unique 
original CFDP solution [23]. 

It is well known [7, 15, 23] that CFDP can be reformulated as the problem of 
minimization on ௩ܲ ∈ ℝேೂ  of function 

)ߔ  ௩ܲ) = ∑ ∫ ߮(ݑ)݀ݑ
௬


ேಶ
ୀଵ −∑ ܳݕ

ேೂ
ୀଵ , (10) 

Where vector of pressure drops ܻ = ߮ ,்ܲܣ = ݂
ିଵ – invert functions to ݂. 

Function Φ( ௩ܲ) is continuous (and even continuously differentiable) and has one global 
minimum, which corresponds to CFDP solution. In the same time Φ( ௩ܲ) → +∞ for 
| ௩ܲ| → +∞, so for any С > Φ – minimal value of Φ( ௩ܲ) – the set of those ௩ܲ, that 
Φ( ௩ܲ) ≤ С, is not only closed, but bounded, and thus is compact set. 

It is found out that mapping ܯாிோ has the following wonderful property – for any ௩ܲ 
not coinciding with its fixed point (i.e. CFDP solution) it strictly decreases the value of 
function Φ: 

)ாிோܯ൫ߔ  ௩ܲ)൯ < )ߔ ௩ܲ) (11) 
Let’s take any vector ௩ܲ

∗ , then ܯாிோ( ௩ܲ
∗ ) is the solution of modified CFDP (3), (4). 

Finding this solution is also equivalent to finding a minimum of function 
∗ாிோߔ  ( ௩ܲ) = ∑ ∫ ߮ாிோ∗ ௬ݑ݀(ݑ)


ேಶ
ୀଵ −∑ ܳݕ

ேೂ
ୀଵ , (12) 

The point of minimum doesn’t change when we add constant to minimized function, so 
we can minimize function Φாிோ

∗ᇱ ( ௩ܲ) = Φாிோ
∗ ( ௩ܲ) + Φ( ௩ܲ

∗ ) − Φாிோ
∗ ( ௩ܲ

∗ ), which 
coincide with  Φ( ௩ܲ) at ܲ ௩ = ௩ܲ

∗ . Then it found out that this function majorizes Φ( ௩ܲ), 
i.e. for ∀ ௩ܲ 

ாிோ∗ᇱߔ  ( ௩ܲ) = ∗ாிோߔ ( ௩ܲ) + )ߔ ௩ܲ
∗ ) − ∗ாிோߔ ( ௩ܲ

∗ ) ≥ )ߔ ௩ܲ) (13) 
Really, from (10) and (12) 

∗ாிோߔ  ( ௩ܲ) + )ߔ ௩ܲ
∗ ) − ∗ாிோߔ ( ௩ܲ

∗ ) − )ߔ ௩ܲ) = ∑ ∫ [߮ாிோ∗ (ݑ) −௬
௬
∗

ேಶ
ୀଵ

߮(ݑ)]݀(14)  ݑ 
Let’s consider terms in (14) – functions ݃(ݕ) = ∫ [߮ாிோ∗ (ݑ) − ߮(ݑ)]݀ݑ

௬
௬
∗  (Fig.2). 
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Fig. 2 

We have ݃(ݕ∗) = 0. When ݕ − ݂(0) has the same sign, as ݕ∗ − ݂(0), ݃(ݕ) is non-
negative according inequalities (8), (9). As ݂(ݔ) − ݂(0) is odd, function ݃(ݕ) is 
symmetrical regarding line ݕ = ݂(0), and so it is non-negative also when ݕ − ݂(0) and 
∗ݕ − ݂(0) has different signs. In particular 

 ∫ [߮ாிோ∗ (ݑ) − ߮(ݑ)]݀ݑ
()
௬
∗ = ∫ [߮ாிோ∗ (ݑ) − ߮(ݑ)]݀ݑ

()
ଶ()ି௬

∗  (15) 
So ݃(ݕ) ≥ 0, and this proves (13). 
As ܯாிோ( ௩ܲ

∗ ) is the only minimum of Φாிோ
∗ᇱ ( ௩ܲ), for ܯாிோ( ௩ܲ

∗ ) ≠ ௩ܲ
∗  from (13) we 

get 
)ாிோܯ൫ߔ  ௩ܲ

∗ )൯ ≤ ாிோ∗ᇲߔ ൫ܯாிோ( ௩ܲ
∗ )൯ < ாிோ∗ᇲߔ ( ௩ܲ

∗ ) = )ߔ ௩ܲ
∗ ) (16) 

This proves (11). 
Established properties of ܯாிோ and function Φ allow to prove convergence of EFR 

method for any initial point! This follows from simple general topological theorem. 
 
Theorem 1. 
Let ܭ – nonempty compact set, on which continuous function Φ:ܭ → ℝ is defined, which 

has the only global minimum in ݑ∗ ∈ ܭ:ܯ and continuous mapping ,ܭ →  is defined, such ܭ
that (∗ݑ)ܯ = ݑ∀ and for ∗ݑ ∈ ൯(ݑ)ܯΦ൫ ,∗ݑ not equal to ,ܭ < Φ(ݑ). 

Then for any ݑ() ∈ (ାଵ)ݑ sequence ܭ =  and this convergence ,∗ݑ ൯ converges to()ݑ൫ܯ
is uniform – for any neighborhood of ݑ∗ it is possible to select such ݊, that ݑ() and further 
members of the sequence will lie in selected neighborhood of ݑ∗ independently of ݑ() 
selection. 

 
Really, for ܯாிோ and any initial point ௩ܲ

() we can simply apply the theorem to the set, 
defined by condition Φ( ௩ܲ) ≤ 	Φ൫ ௩ܲ

()൯. 
 
Prove of theorem 1. 
Let ݑ() ≠  ൯ decreases monotonically and bounded from below()ݑthen sequence Φ൫ ,∗ݑ

Φ(ݑ∗) and thus converges to its exact lower bound с = ݂݅݊ ቀΦ൫ݑ()൯ቁ. Suppose that ݑ() 
does not converges to ݑ∗. Then there exists such open neighborhood ߝ of ݑ∗, such that infinite 
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number of ݑ() members are outside ߝ– i.e. ∈  This means that it is possible to choose .ߝ\ܭ
sub-sequence from ݑ() which lies in ߝ\ܭ. As ߝ\ܭ is also compact, according the Bolzano-
Weierstrass theorem, we can choose sub-sequence ݓ() from this sub-sequence (which also 
will be sub-sequence of ݑ()), converging to some not coinciding with ݑ∗ point ݓ∗ ∈  .	ߝ\ܭ
As Φ is continuous, Φ൫ݓ()൯ → 	Φ(ݓ∗). As Φ൫ݓ()൯ is sub-sequence of sequence Φ൫ݑ()൯, 
Φ൫ݓ()൯ → с, and Φ(ݓ∗) = с. Let’s consider sequence ܯ൫ݓ()൯, which also will be 
sub-sequence of original sequence ݑ(). As mapping ܯ is continuous, ܯ൫ݓ()൯ →  ,(∗ݓ)ܯ
and Φቀܯ൫ݓ()൯ቁ → Φ൫(∗ݓ)ܯ൯. But as sub-sequence of Φ൫ݑ()൯, Φቀܯ൫ݓ()൯ቁ → с. So 
Φ൫(∗ݓ)ܯ൯ = с = Φ(ݓ∗), which contradicts theorem condition Φ൫(∗ݓ)ܯ൯ < Φ(ݓ∗). 
This proves that ݑ() converges to ݑ∗. 

Let’s now prove that convergence is uniform. Let ߝ – some open neighborhood of point 
Φ has some minimum value Сఌ ߝ\ܭ On compact .∗ݑ > 	Φ(ݑ∗). Then set Ωఌ of all points ݑ ∈
(ݑ)such that Φ ܭ < Сఌ, is also some open neighborhood of ݑ∗, Ωఌ ⊆  and (according ߝ
theorem conditions) ܯ(Ωఌ) ⊆ Ωఌ. Let’s define the following sequence of open sets: Ωఌ

() =
Ωఌ, Ωఌ

(ାଵ) = ଵ൫Ωఌିܯ
()൯. As ݑ() converges to ݑ∗ for any ݑ(), ܭ = ⋃ Ωఌ

()ஶ
ୀ . So we have 

open cover of compact ܭ – and must contain some finite sub-cover. Maximal number of Ωఌ
() 

in this sub-cover give required number ݊. 

3. Modified EFR method and its convergence 
As can be seen from previous section, the condition that functions ݂(ݔ) − ݂(0) should be 
odd, is very significant for the prove of EFR method convergence, and cannot be dropped. 
For edges losses on which depends on flow direction, left-hand and right-hand derivatives of 
݂(ݔ) can be different (if edge properties in laminar flow pattern also depend on flow 

direction) – and as a result the mapping ܯாிோ cannot be defined as continuous everywhere. 
Also for such edges equation (15) will not be valid, and inequality (11) may be not valid in 
some regions.  

In practice this leads to oscillation of flow rate sign on some edges in process of EFR 
iterations. Though this problem usually can be easily solved by usual tricks (for example 
averaging of oscillating iterations), it would be good to have theoretical justification why and 
how EFR can be applied for networks with “non-symmetrical” edges. Is it possible to slightly 
modify EFR method in such a way that it still converges from any initial point for non-
symmetrical edges? It found out that it is possible! 

Modified EFR method (MEFR) proposed below works for hydraulic networks with the 
following conditions on edge loss functions: 

1) ݂ ∈  ;i.e. defined and continuous on ℝ ,[∞+,∞−]ܥ
2) ݂ strictly monotonically increase; 
3) ݂ → −∞ for ݔ → −∞ and ݂ → +∞ for ݔ → +∞; 
4) Right-hand and left-hand derivatives of ݂ at ݔ = 0 exist and are positive: ݂ା

ᇱ (0) >
0, ݂ି

ᇱ (0) > 0; 
5) Functions ܽொிோା(ݔ) = [ ݂(ݔ) − ݂(0)] ⁄ݔ   monotonically increase (maybe not 

strictly) for ݔ > 0; 
6) Functions ܽொிோି(ݔ) = [ ݂(ݔ) − ݂(0)] ⁄ݔ   monotonically decrease (maybe not 

strictly) for ݔ < 0; 
7) Functions ܽொிோା(ݔ) and ܫொிோା(ݔ) = ∫ [ ݂(0) + ܽொிோା(ݔ)ݒ − ݂(ݒ)]

௫
  ݒ݀

→ +∞ for ݔ → +∞; 
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8) Functions ܽொிோି(ݔ) and ܫொிோି(ݔ) = ∫ [ ݂(0) + ܽொிோି(ݔ)ݒ − ݂(ݒ)]
௫
  ݒ݀

→ +∞ for ݔ → −∞ 
It was already mentioned that conditions 1-3 are standard for existence and unique of 

CFDP solution. Condition 4 means that edge resistance in laminar flow is taken into account 
for both directions of the flow. Conditions 5 and 6 are weak convex conditions for edge loss 
functions and are usually valid in practice. Finally, conditions 7 and 8 means super-linear 
increase of losses vs flow rate – which is also valid in practice for hydraulic networks. 

Note that functions ܫொிோା(ݔ) and ܫொிோି(ݔ) (which has physical meaning of the 
area between curve ݂ and chord – i.e. difference in energy between real and linearized edge 
curve) are continuous, monotonic (maybe not strictly), →0 at ݔ → 0, and surjectively map 
correspondingly (0,+∞) and (0, −∞) onto (0,+∞). Let’s define functions ܽொிோା(ݔ) 
and ܽொிோି(ݔ) continuously in zero point: ܽொிோା(0) = ݂ା

ᇱ (0), ܽொிோି(0) = ݂ି
ᇱ (0). 

 

 
Fig. 3 

Modified EFR (MEFR) will replace on each iteration step edge functions ݂(ݔ) not with 
linear ones, but with piecewise linear functions, with different angle on positive and negative 
semi-axis. Specifically – for ௩ܲ

∗  we will define piecewise linear function ெ݂ாிோ
∗  as (ݔ)

(Fig.3): 
On positive semi-axis ݔ ≥ 0 

 At ݔ∗ = 0 ெ݂ாிோ
∗ (ݔ) = ݂(0) + ܽொிோା(0)ݔ (17) 

 At ݔ∗ > 0 ெ݂ாிோ
∗ (ݔ) = ݂(0) + ܽொிோା(ݔ∗)ݔ (18) 

 At ݔ∗ < 0 ெ݂ாிோ
∗ (ݔ) = ݂(0) + ܽொிோା(ݔ∗∗)ݔ (19) 

On negative semi-axis ݔ ≤ 0 
 At ݔ∗ = 0 ெ݂ாிோ

∗ (ݔ) = ݂(0) + ܽொிோି(0)ݔ (20) 
 At ݔ∗ > 0 ெ݂ாிோ

∗ (ݔ) = ݂(0) + ܽொிோି(ݔ∗∗)ݔ (21) 
 At ݔ∗ < 0 ெ݂ாிோ

∗ (ݔ) = ݂(0) + ܽொிோି(ݔ∗)ݔ (22) 
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Here ܽொிோା(ݔ∗∗) and ܽொிோି(ݔ∗∗) in (19) and (21) are found from conditions of 
equality of squares: 

(∗∗ݔ)ொிோାܫ  =  (23) (∗ݔ)ொிோିܫ
(∗∗ݔ)ொிோିܫ  =  (24) (∗ݔ)ொிோାܫ

Note that though ݔ∗∗ can be not unique (when ܽொிோ±(ݔ) and ܫொிோ±(ݔ) are not 
strictly monotonic), ܽொிோା(ݔ∗∗) are ܽொிோି(ݔ∗∗) are correctly define and continuous via 
 .∗ݔ

To find ݔ∗∗ for ݔ∗ from (23), (24), numerical methods can be used, but for simple 
functions ݂(ݔ) this can be done analytically. For example, for often used «2K method», 
when ݂ (ݔ) = ݂(0) + ݔଵାܭ ݔ | atݔ|ݔଶାܭ+ ≥ 0 and ݂(ݔ) = ݂(0) + ݔଵିܭ  |ݔ|ݔଶିܭ+
at ݔ ≤ 0, integration in (23), (24) will give ݔ∗∗ = ଶାܭ)∗ݔ− ⁄ଶିܭ )ଵ ଷ⁄  at ݔ∗ > 0 and ݔ∗∗ =
ଶିܭ)∗ݔ− ⁄ଶାܭ )ଵ ଷ⁄  at ݔ∗ < 0. 

The mapping ܯொிோ:ℝேೂ → ℝேೂ , which maps any node pressure vector ௩ܲ
∗  to node 

pressure vector in nodes ொܸ, which is CFDP solution of system (1), (2), where edge functions 
are replaced by piecewise linear as described above (such solution exists and unique 
according [23]) is continuous and has the only fixed point, which correspond to solution of 
original CFDP. We can always calculate ܯொிோ( ௩ܲ

∗ ) by solving 2ேಶ  linear systems for all 
combinations of different pieces of edge curves and selecting the only solution with correct 
signs of flow rates. In practice, of course, this usually is not necessary – it is usually enough 
to solve initially the linear system with pieces correspondent to flow rate signs for ௩ܲ

∗  (i.e. 
to calculate ܯாிோ( ௩ܲ

∗ )), and then involve other pieces only for edges, where flow rate 
changes sign. 

Similar to section 2 it can be shown that (due to selection of ݔ∗∗) Φொிோ
∗ᇲ  always 

completely majorizes Φ, so for any point except CFDP solution Φ൫ܯொிோ( ௩ܲ)൯ <
Φ( ௩ܲ). Then according theorem 1 MEFR method converges to CFDP solution for any 
initial point. 

As for those points for which ܯொிோ mapping does not change sign for edge flow rates, 
it coincides with ܯாிோ, we also get that for “non-symmetrical” edge network, when EFR 
iteration stop change flow rate signs, they converge to CFDP solution. 

Finally, if CFDP solution has all edge flow rates non-zero, it is always possible to find 
such С > ݉݅݊	Φ, that all points with Φ ≤ C has the same signs of flow rates as CFDP 
solution. Then for any such point as initial point all iteration of EFR method will coincide 
with MEFR iterations and will converges to CFDP solution. 

 
The author expresses deep gratitude to Leonid Duginov and Michael Rozovskiy, who 

attracted the author attention to EFR method and challenged the author with the task of 
proving its convergence. The assistance of Michael Rozovskiy, who carefully studied the text 
of the article and proposed many significant corrections and improvements, is also highly 
appreciated. 
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