ВЫСТАВКИ • СИМПОЗИУМЫ • КОНФЕРЕНЦИИ

Материалы XVIII Всероссийского научного семинара с международным участием "Математические модели и методы анализа и оптимального синтеза развивающихся трубопроводных и гидравлических систем"

Автоматизация и информатизация ТЭК. 2023. № 12(605). С. 44–52 Automation and informatization of the fuel and energy complex. 2023; (12(605)):44-52

Научная статья УДК 519.61:621.644 DOI: 10.33285/2782-604Х-2023-12(605)-44-52 Шифр научной специальности: 1.2.2

О СХОДИМОСТИ МЕТОДА "ПРОГНОЗИРУЕМОГО РАСХОДА" РАСЧЕТА ГИДРАВЛИЧЕСКИХ ЦЕПЕЙ

Леонид Бенционович Корельштейн

Научно-техническое предприятие "Трубопровод", г. Москва, Россия, Korelstein@truboprovod.ru

Аннотация. В статье для некоторого класса гидравлических цепей с нечетными характеристиками ветвей доказана равномерная сходимость из любого начального приближения описанного ранее и много лет успешно применяемого на практике метода "прогнозируемого расхода" (Estimated Flow Rate – EFR) решения классической задачи потокораспределения (КЗП). Данный метод является одной из разновидностей "метода хорд". Полученный результат позволяет понять природу устойчивости метода EFR. При экстремальной формулировке КЗП относительно узловых потенциалов каждая итерация метода оказывается непрерывным отображением, всегда строго уменьшающим целевую функцию везде, кроме единственной неподвижной точки, являющейся решением задачи. Тем самым равномерная сходимость метода EFR оказывается частным случаем общей топологической теоремы, сформулированной и доказанной в данной статье. Предложена также более универсальная модификация метода EFR, сохраняющая свойство равномерной сходимости для более широкого класса гидравлических цепей с необязательно нечетными характеристиками ветвей, который охватывает большинство практически встречающихся случаев.

Ключевые слова: гидравлическая цепь, расходы по ветвям, узловые давления, классическая задача потокораспределения, метод "прогнозируемого расхода", экстремальная задача, равномерная сходимость, модифицированный метод "прогнозируемого расхода"

Для цитирования: Корельштейн Л.Б. О сходимости метода "прогнозируемого расхода" расчета гидравлических цепей // Автоматизация и информатизация ТЭК. – 2023. – № 12(605). – С. 44–52. – DOI: 10.33285/2782-604X-2023-12(605)-44-52

Original article

ON THE CONVERGENCE OF THE "ESTIMATED FLOW RATE" METHOD FOR HYDRAULIC NETWORK FLOW RATE DISTRIBUTION ANALYSIS

Leonid B. Korelstein

Piping Systems Research & Engineering Co (NTP Truboprovod), Moscow, Russia, Korelstein@truboprovod.ru

Abstract. The article contains the mathematical prove of uniform convergence from any initial point of "estimation flow rates" algorithm (EFR) for classical flow rate distribution problem (CFRDP), for some class of networks with odd head loss vs flow rate edge functions. EFR algorithm (one of variants of "chord algorithms") was earlier described and successfully used during several decades. The result clarifies the nature of EFR stability. It is found out that for CFRDP in the form of optimization problem for node pressures, each step of EFR algorithm is continuous mapping which strictly decreases the value of minimized function for all points expect the only fixed point (which is CFRDP unique solution). In this way the uniform convergence of EFR follows from general topological theorem which is formulated and proved in the article. Also, a more universal modification of EFR (MERP) is proposed for more general class of network (without demand of odd edge head loss vs flow rate function), which keeps the same uniform convergence property for most hydraulic networks in engineering practice.

Keywords: hydraulic network edge flow rates, node pressures, classical flow rate distribution task, "estimation flow rates" algorithm, optimization problem, uniform convergence, modified "estimation flow rates" algorithm

For citation: Korelstein L.B. On the convergence of the "estimated flow rate" method for hydraulic network flow rate distribution analysis // Automation and informatization of the fuel and energy complex. – 2023. – No 12(605). – P. 44–52. – DOI: 10.33285/2782-604X-2023-12(605)-44-52

Введение

В статье [1] описан итерационный метод "прогнозируемого расхода" (Estimated Flow Rate – EFR), предложенный Л.А. Дугиновым более 50 лет назад и успешно применяемый с 1972 г. для расчета гидравлических и иных цепей.

Разнообразные методы решения классической задачи потокораспределения (КЗП) в гидравлических непях исследуются уже почти столетие, начиная с увязочных методов Лобачева – Кросса [2, 3]. Наибольшую практическую популярность в последнее время получили различные варианты итерационных методов, основанные на методе Ньютона – линеаризации касательными различных форм нелинейных уравнений гидравлических цепей: методы "линейной теории" (Linear Theory – LT) [6], контурных расходов (МКР) (Loop Flow – LM) [4, 5, 7], узловых давлений/потенциалов (УД) (Nodal Adjustment method -NM) [4, 5, 8], а также метод глобального градиента (MΓΓ) (Global Gradient Algorithm - GGA) [9]. B paбoтах [10, 11] дан обзор и показана единая природа этих методов. Еще одной разновидностью данных методов стал недавно появившийся так называемый Reformulated Co-Tree Method (RCTM) [12], сочетающий подходы GGA и МКР и в некоторых случаях более эффективный (но при этом требующий топологического анализа). Продолжаются также усилия по дальнейшему повышению эффективности МКР (см., например, [13]). Данные методы имеют обычно весьма высокую скорость сходимости, однако некоторые из них могут существенно зависеть от начального приближения.

Одновременно с этим исследовались неньютоновские методы, основанные на линеаризации уравнений гидравлической цепи хордами или секущими. Такие методы были первоначально предложены в [14, 15] и затем в [5], а также затронуты в [16]. Систематическое исследование данных методов содержится в [17]. Отметим, что многие из этих методов демонстрируют очень высокую эффективность.

Метод EFR также является разновидностью метода хорд и имеет линейную скорость сходимости, однако эта скорость достаточно велика (особенно для расходов) – чаще всего на практике требуется не более 10 итераций. При этом большим достоинством метода является его высокая устойчивость независимо от начального приближения. Как показал многолетний опыт гидравлических расчетов, EFR позволяет задавать практически любые начальные значения расходов и давлений, причем число итераций слабо зависит от их выбора. Это свойство метода позволяет также применять его совместно с другими (например, GGA), чтобы получать для последних хорошее начальное приближение.

Однако до сих пор отсутствовало формальное математическое доказательство сходимости EFR, как и достаточное понимание природы его устойчивости. Данная статья призвана восполнить этот пробел. Оказывается, для этого достаточно рассмотреть применение EFR к КЗП как к экстремальной задаче.

Постановка задачи и метод EFR

Пусть G – ориентированный связный граф с N_V узлами (образующими множество узлов V) и N_E ветвями (образующими множество ветвей E).

Как известно, уравнения КЗП теории гидравлических цепей можно записать в виде

$$A^T P = F(X), \tag{1}$$

$$AX = Q. \tag{2}$$

Здесь A – матрица соединений узлов и ветвей, X – вектор массовых расходов по ветвям, Q – вектор внешних массовых притоков и отборов в узлах, P – вектор узловых потенциалов (давлений), F(X) – вектор-функция, каждый элемент которой является функцией потерь потенциала на ветвях.

Предполагается, что в подмножестве узлов V_P заданы узловые давления P_{fix} (в N_P узлах), а в других N_Q узлах (подмножество V_Q) – узловые притоки Q_{fix} , и требуется найти узловые давления P_{var} в N_Q узлах (и, соответственно, притоки в N_P узлах Q_{var} и расходы по ветвям X), удовлетворяющие уравнениям (1), (2).

Метод EFR состоит в том, что на каждой итерации решается система линейных уравнений, аналогичная (1), (2), в которой нелинейная вектор-функция F(X) заменяется на линейную вектор-функцию $F_{\text{EFR}}(X) = A_{\text{EFR}}X + F_0$, $F_0 = F(0)$, соответствующую хорде функции F(X) (или обратной к ней функции ϕ), проходящей через текущее приближение и точку, соответствующую нулевому расходу.

Таким образом, на *i*-й итерации решается система линейных уравнений

$$A^{T}P^{(i)} = A^{(i)}_{\rm EFR} X^{(i)} + F_0,$$
(3)

$$AX^{(i)} = Q. \tag{4}$$

При этом элементы диагональной матрицы $A_{\rm EFR}^{(i)}$ (которые можно назвать линейными сопротивлениями ветвей) на каждой итерации рассчитываются по формуле

$$a_{\text{EFR}jj}^{(i)} = \left(y_j^{(i-1)} - F_{0j} \right) / X_{\text{EFR}j}^{(i-1)},$$
 (5)

где "прогнозируемый расход" $X_{\text{EFR}j}^{(i-1)} = \varphi\left(y_j^{(i-1)}\right);$ $Y_{j}^{(i-1)} = A^T P^{(i-1)}$

В том редком случае, когда расход на ветви в текущем приближении равен нулю, и в выражении для $a_{\text{EFR}jj}^{(i)}$ в формуле (5) числитель и знаменатель равны

нулю, принимается $a_{\text{EFR},jj}^{(i)} = \frac{dF_j}{dX_j}(0)$ где производная

вычисляется явно либо численно (при этом обязательно следует учитывать переход течения при малых расходах в ламинарный режим, чтобы значение $a_{\text{EFR}ji}^{(i)}$ было ненулевым – см., например, [19]).

Поскольку функция расхода монотонна и обычно достаточно гладкая [19], эффективное вычисление обратной функции на каждом шаге алгоритма и в этом случае не составляет проблемы, поскольку существует множество высокоэффективных методов решения таких одномерных уравнений.

Заметим, что на начальном шаге вместо узловых давлений можно (и часто более эффективно) задавать некоторые разумные значения расходов по ветвям $X_{\rm EFR}^{(0)}$, поскольку в формуле (5) потери можно просто принять как $Y^{(0)} = F\left(X_{\rm EFR}^{(0)}\right)$.

Заметим также, что на каждой итерации исходная цепь заменяется линейной с сохранением базовых свойств ветвей – пассивные ветви остаются пассивными, а напор активных ветвей сохраняется. Тем самым для сетей на каждой итерации применимы те же доказанные в [20] теоремы об ограничениях на узловые давления, что и для исходной цепи, и уже после первой итерации значения узловых давлений получаются достаточно близкими к решению, что минимизирует возможность случайного "вылета" в процессе итераций в зону неадекватности модели (например, вскипания либо конденсации продукта, а также критического течения). Это является одним из факторов, обусловливающих устойчивость EFR к выбору начального приближения.

О сходимости метода EFR

Докажем сходимость метода EFR для гидравлических цепей, функции потерь f_i всех ветвей которых удовлетворяют следующим требованиям:

1) $f_i \in C[-\infty, +\infty]$, т. е. определены и непрерывны на \mathbb{R} : 2) f_i строго монотонно возрастают;

3) $f_i \to -\infty$ при $x_i \to -\infty$ и $f_i \to +\infty$ при $x_i \to +\infty$;

4) функции $a_{\text{EFR}ii}(x_i) = [f_i(x_i) - f_i(0)]/x_i$ – монотонно возрастают при $x_i > 0$;

5) производная f_i при $x_i = 0$ существует и положительна: $f'_i > 0$;

6) функции $f_i(x_i) - f_i(0)$ нечетные.

Условия 1–3 имеют очевидный физический смысл и совпадают с условиями на характеристики ветвей, для которых доказано существование и единственность решения КЗП [18].

Условие 4 представляет собой ослабленное условие выпуклости f_i при $x_i > 0$ и практически всегда выполняется. Если f_i при $x_i > 0$ выпуклы, оно заведомо выполняется.

Условие 5 (по крайней мере, в части существования односторонних производных) имеет ясный физический смысл – учет сопротивления ветви при ламинарном течении – и при правильной постановке задачи всегда может быть выполнено добавлением соответствующего линейного члена в характеристики ветви.

А вот условие 6 выполняется далеко не всегда. Оно фактически означает, что потери на ветви не зависят от направления течения. В большинстве случаев оно выполняется, но если ветвь включает переходы с одного диаметра на другой, насосы или какиелибо другие элементы, гидравлическое сопротивление которых зависит от направления течения, то условие 6 для таких ветвей выполнено не будет. В дальнейшем рассмотрим, как можно модифицировать метод EFR, чтобы избавиться от этого условия.

Заметим, что из условий 1–6 вытекает, что функции $a_{\text{EFR}ii}(x_i)$ (доопределенные в нуле как $a_{\text{EFR}ii}(0) = f'_i(0)$) непрерывны на \mathbb{R} , четные и монотонно возрастают при $x_i \ge 0$.

Далее, из условий 4–6 следует, что для $\forall x^*$ и соответствующей ему $f_{\text{EFR}i}^*(x_i)$ имеют место неравенства (рис. 1)

$$f_{i}(x_{i}) \geq f_{i}(0) + a_{\text{EFR}ii}(x^{*})x_{i} = f_{\text{EFR}i}^{*}(x_{i})$$

при $x_{i} \geq |x^{*}|$ и $-|x^{*}| \leq x_{i} \leq 0,$ (6)

$$f_{i}(x_{i}) \leq f_{i}(0) + a_{\text{EFR}ii}(x^{*})x_{i} = f_{\text{EFR}i}^{*}(x_{i})$$

при $x_{i} \leq -|x^{*}|$ и $0 \leq x_{i} \leq |x^{*}|.$ (7)

Для обратных функций $\phi_i = f_i^{-1}$ и $\phi_{\text{EFR}i}^* = f_{\text{EFR}i}^{*-1}$ имеют место соответственно следующие аналогичные неравенства для $y^* = f_i(x^*)$:

$$\varphi_{i}(y_{i}) \leq \varphi_{\text{EFR}i}^{*}(y_{i}) \text{ при } y_{i} - f_{i}(0) \geq |y^{*} - f_{i}(0)|$$

$$\mathbf{u} - \left| y^{*} - f_{i}(0) \right| \leq y_{i} - f_{i}(0) \leq 0, \qquad (8)$$

$$\varphi_i(y_i) \ge \varphi_{\text{EFR}i}^*(y_i)$$
 при $0 \le y_i - f_i(0) \le |y^* - f_i(0)|$

и
$$y_i - f_i(0) \le -|y^* - f_i(0)|.$$
 (9)

Рассмотрим отображение $M_{EFR} : \mathbb{R}^{NQ} \to \mathbb{R}^{NQ}$, ставящее в соответствие произвольному вектору узловых давлений P_{var} вектор давлений в узлах V_Q , полученный решением системы (3), (4). Тогда отображение M_{EFR} непрерывно (поскольку непрерывны функции $a_{EFRii}(x_i)$, являющиеся коэффициентами системы линейных уравнений (3), (4), всегда имеющей единственное решение) и имеет единственную неподвижную точку, соответствующую решению исходной задачи КЗП, которое существует и единственно [18].

Как известно [5, 10, 18], задача КЗП может быть сведена к задаче нахождения минимума по $P_{var} \in \mathbb{R}^{NQ}$ функции

$$\Phi(P_{var}) = \sum_{i=1}^{N_E} \int_{0}^{y_i} \phi_i(u) du - \sum_{i=1}^{N_Q} Q_i y_i, \qquad (10)$$

где вектор перепадов давления $Y = A^T P$; $\phi_i = f_i^{-1} -$ обратные функции к f_i .

Функция $\Phi(P_{var})$ является непрерывной (и даже непрерывно дифференцируемой) и имеет один глобальный минимум, соответствующий решению КЗП. При этом $\Phi(P_{var}) \rightarrow +\infty$ при $|P_{var}| \rightarrow +\infty$, так что при любом $C > \Phi_{\min}$ – минимального значения функции $\Phi(P_{var})$ – множество P_{var} таких, что $\Phi(P_{var}) \leq C$, не только замкнуто, но и ограничено, и, следовательно, компактно.

Оказывается, у отображения $M_{\rm EFR}$ есть следующее замечательное свойство: для всех P_{var} , не совпадающих с его неподвижной точкой (т. е. решением КЗП), оно строго уменьшает значение функции Ф

$$\Phi\left(M_{\rm EFR}\left(P_{var}\right)\right) < \Phi\left(P_{var}\right). \tag{11}$$

В самом деле, возьмем некоторый вектор P_{var}^* , тогда $M_{EFR}\left(P_{var}^*\right)$ представляет собой решение модифицированной КЗП (3), (4). Ее решение также эквивалентно поиску минимума функции

$$\Phi_{\rm EFR}^{*}(P_{var}) = \sum_{i=1}^{N_E} \int_{0}^{y_i} \phi_{\rm EFRi}^{*}(u) du - \sum_{i=1}^{N_Q} Q_i y_i.$$
 (12)

Поскольку точка минимума не зависит от добавления константы к целевой функции, будем вместо этого искать минимум функции $\Phi_{\text{EFR}}^{*'}(P_{var}) = \Phi_{\text{EFR}}^{*}(P_{var}) + \Phi(P_{var}^{*}) - \Phi_{\text{EFR}}^{*}(P_{var}^{*})$, которая совпадает с $\Phi(P_{var})$ при $P_{var} = P_{var}^{*}$. Оказывается, эта функция мажорирует $\Phi(P_{var})$, т. е. для $\forall P_{var}$

$$\Phi_{\text{EFR}}^{*'}\left(P_{var}\right) = \Phi_{\text{EFR}}^{*}\left(P_{var}\right) + \Phi\left(P_{var}^{*}\right) - \Phi_{\text{EFR}}^{*}\left(P_{var}^{*}\right) \ge \Phi\left(P_{var}\right).$$
(13)

В самом деле, из (10) и (12)

$$\Phi_{\text{EFR}}^{*}\left(P_{var}\right) + \Phi\left(P_{var}^{*}\right) - \Phi_{\text{EFR}}^{*}\left(P_{var}^{*}\right) - \Phi\left(P_{var}\right) =$$
$$= \sum_{i=1}^{N_{E}} \int_{y_{i}^{*}}^{y_{i}} \left[\varphi_{\text{EFR}i}^{*}\left(u\right) - \varphi_{i}\left(u\right)\right] du.$$
(14)

Рассмотрим слагаемые в (14): функции $g_i(y_i) = \int_{y_i^*}^{y_i} \left[\phi_{\text{EFR}i}^*(u) - \phi_i(u) \right] du$ (рис. 2).

Имеем $g_i(y_i^*) = 0$. Когда $y_i - f_i(0)$ того же знака, что и $y_i^* - f_i(0)$, неотрицательность $g_i(y_i)$ следует из неравенств (8), (9). При этом из условия нечетности $f_i(x_i) - f_i(0)$ следует, что $g_i(y_i)$ симметрична относительно прямой $y_i = f_i(0)$, т. е. она неотрицательна и при разных знаках $y_i - f_i(0)$ и $y_i^* - f_i(0)$. В частности

$$\int_{y_{i}^{*}}^{f_{i}(0)} \left[\varphi_{\text{EFR}i}^{*}(u) - \varphi_{i}(u) \right] du =$$

$$= \int_{2f_{i}(0)-y_{i}^{*}}^{f_{i}(0)} \left[\varphi_{\text{EFR}i}^{*}(u) - \varphi_{i}(u) \right] du. \quad (15)$$

В итоге получаем, что $g_i(y_i) \ge 0$, откуда и следует неравенство (13).

Поскольку $M_{EFR}(P_{var}^{*})$ есть единственная точка минимума $\Phi_{EFR}^{*'}(P_{var})$, то при $M_{EFR}(P_{var}^{*}) \neq P_{var}^{*}$ с учетом (13) получаем

$$\Phi\left(M_{\rm EFR}\left(P_{var}^{*}\right)\right) \leq \Phi_{\rm EFR}^{*'}\left(M_{\rm EFR}\left(P_{var}^{*}\right)\right) < \Phi_{\rm EFR}^{*'}\left(P_{var}^{*}\right) =$$
$$= \Phi\left(P_{var}^{*}\right). \tag{16}$$

Что и доказывает (11).

С учетом установленных свойств отображения $M_{\rm EFR}$ и функции Ф сходимость метода EFR из любого начального приближения теперь следует из общей простой топологической теоремы.

Теорема 1

Пусть *K* – непустое компактное множество, на котором определены непрерывная функция $\Phi: K \to \mathbb{R}$, имеющая единственный глобальный минимум в точке $u^* \in K$, и непрерывное отображение $M: K \to K$, такое, что $M(u^*) = u^*$ и для $\forall u \in K$, неравного u^* , $\Phi(M(u)) < \Phi(u)$.

Тогда для любого $u^{(0)} \in K$ последовательность $u^{(i+1)} = M(u^{(i)})$ сходится к u^* , причем эта сходимость равномерная, т. е. для любой окрестности u^* можно указать такое *n*, что $u^{(n)}$ и последующие члены последовательности будут лежать в выбранной окрестности независимо от выбора $u^{(0)}$.

В самом деле, в случае $M_{\rm EFR}$ и любого начального приближения $P_{var}^{(0)}$ достаточно применить теорему к компактному множеству, заданному условием $\Phi(P_{var}) \leq \Phi(P_{var}^{(0)})$.

Доказательство теоремы 1

Пусть $u^{(0)} \neq u^*$, тогда последовательность $\Phi(u^{(i)})$ монотонно убывает и ограничена снизу величиной $\Phi(u^*)$ и, следовательно, стремится к своей точной нижней грани $c_{inf} = inf(\Phi(u^{(i)}))$. Допустим, что $u^{(i)}$ не сходится к u^* . Тогда существует такая открытая окрестность є точки u^* , что бесконечно много членов $u^{(i)}$ в нее не попадают – т. е. $\in K \setminus \varepsilon$. Иначе говоря, из и⁽ⁱ⁾ можно выбрать подпоследовательность, лежащую в $K \setminus \varepsilon$. Поскольку $K \setminus \varepsilon$ тоже компактно, то согласно теореме Больцано -Вейерштрасса, из нее в свою очередь можно выбрать некоторую подпоследовательность $w^{(i)}$ (которая будет и подпоследовательностью $u^{(i)}$), сходящуюся к некоторой отличной от u^* точке $w^* \in K \setminus \varepsilon$. Поскольку Φ непрерывна, то $\Phi(w^{(i)}) \rightarrow \Phi(w^*)$. Поскольку $\Phi(w^{(i)})$ есть подпоследовательность последовательности $\Phi(u^{(i)})$, то $\Phi(w^{(i)}) \rightarrow c_{inf}$ и $\Phi(w^*) = c_{inf}$. Рассмотрим последовательность $M(w^{(i)})$. которая, очевидно, также будет подпоследовательностью исходной последовательности. Поскольку отображение *M* непрерывно, $M(w^{(i)}) \to M(w^{*})$, а $\Phi(M(w^{(i)})) \to \Phi(M(w^*))$. Но при этом, как подпоследовательность $\Phi(u^{(i)}), \ \Phi(M(w^{(i)})) \rightarrow c_{inf}$. Получили $\Phi(M(w^*)) = c_{inf} = \Phi(w^*)$, а это противоречит условию теоремы, что $\Phi(M(w^*)) < \Phi(w^*)$. Тем самым сходимость $u^{(i)}$ к u^* доказана.

Докажем теперь равномерность сходимости. Пусть ε – некоторая открытая окрестность точки u^* . На компакте $K \setminus \varepsilon$ Ф принимает некоторое минимальное значение C_{ε} , большее $\Phi(u^*)$. Тогда множество Ω_{ε} всех точек $u \in K$ таких, что $\Phi(u) < C_{\varepsilon}$, образует некоторую открытую окрестность u^* , причем $\Omega_{\varepsilon} \subseteq \varepsilon$ и (согласно условиям теоремы) $M(\Omega_{\varepsilon}) \subseteq \Omega_{\varepsilon}$. Определим следующую последовательность открытых множеств-прообразов: $\Omega_{\varepsilon}^{(0)} = \Omega_{\varepsilon}$, $\Omega_{\varepsilon}^{(i+1)} = M^{-1}(\Omega_{\varepsilon}^{(i)})$. Поскольку последовательность $u^{(i)}$ сходится к u^* для любого $u^{(0)}$, $K = \bigcup_{i=0}^{\infty} \Omega_{\varepsilon}^{(i)}$. Таким образом, имеем открытое покрытие компакта K: и в силу компактности из него всегда можно выбрать конечное подпокрытие. Максимальный номер $\Omega_{\varepsilon}^{(i)}$ в этом подпокрытии, очевидно, и будет искомым числом *n*.

Модифицированный метод EFR и его сходимость

Как видно из предыдущего раздела, условие нечетности функций $f_i(x_i) - f_i(0)$ существенно для доказательства сходимости метода EFR, и просто опустить его нельзя. Для ветвей, характеристики которых зависят от направления потока, во-первых, левые и правые производные в нуле функций $f_i(x_i)$ могут не совпадать (когда характеристики ветви при ламинарном течении также зависят от направления потока), а это может привести к некорректному определению отображения $M_{\rm EFR}$ так, чтобы оно везде было непрерывно. А во-вторых, для таких ветвей не выполняется уравнение (15), а следовательно, в каких-то областях может не выполняться неравенство (11).

На практике это выражается в том, что в процессе итераций EFR знак расхода на некоторых ветвях начинает "скакать". В практических расчетах проблема легко решается обычными в численных методах приемами (например, усреднением "осциллирующих" последовательных итераций), все же хотелось бы иметь теоретическое обоснование применимости метода и для ветвей с "несимметричными" характеристиками. Можно ли "слегка модифицировать" метод EFR таким образом, чтобы замечательное свойство сходимости из любого начального приближения сохранялось? Возможно.

Предлагаемый ниже модифицированный метод EFR (MEFR) работает для гидравлических цепей со следующими условиями на характеристики ветвей:

1) $f_i \in C[-\infty, +\infty]$, т. е. определены и непрерывны на \mathbb{R} ;

2) f_i строго монотонно возрастают;

3) $f_i \to -\infty$ при $x_i \to -\infty$ и $f_i \to +\infty$ при $x_i \to +\infty$;

4) правая и левая производные f_i при $x_i = 0$ существуют и положительны: $f'_{i+}(0) > 0$, $f'_{i-}(0) > 0$;

5) функции $a_{\text{MEFR}ii+}(x_i) = [f_i(x_i) - f_i(0)]/x_i$ монотонно (не обязательно строго монотонно) возрастают при $x_i > 0$;

6) функции $a_{\text{MEFR}ii-}(x_i) = [f_i(x_i) - f_i(0)]/x_i$ монотонно (не обязательно строго монотонно) убывают при $x_i < 0$;

7) функции
$$a_{\text{MEFR}ii+}(x_i)$$
 и $I_{\text{MEFR}ii+}(x_i) = \int_{0}^{x_i} \left[f_i(0) + a_{\text{MEFR}ii+}(x_i)v - f_i(v) \right] dv$ стремятся к + ∞

при $x_i \to +\infty;$

8) функции
$$a_{\text{MEFR}ii-}(x_i)$$
 и $I_{\text{MEFR}ii-}(x_i) = x_i$

$$= \int_{0}^{i} \left[f_{i}(0) + a_{\text{MEFR}ii-}(x_{i})v - f_{i}(v) \right] dv$$
стремятся к +∞

при $x_i \rightarrow -\infty$.

Как уже отмечалось, условия 1–3 – это стандартные условия для существования и единственности решения КЗП. Условие 4 означает учет сопротивления ламинарному течению при течении по и против выбранного направления ветви. Условия 5 и 6 соответствуют ослабленным условиям выпуклости (вогнутости) характеристик ветвей и на практике, как правило, выполняются. Наконец, условия 7 и 8 означают, что потери на ветви растут с расходом существенно быстрее, чем линейно. Учитывая, что обычно они растут квадратично от расхода, эти условия на практике также выполняются.

Заметим, что функции $I_{\text{MEFR}ii+}(x_i)$ и $I_{\text{MEFR}ii-}(x_i)$ (имеющие физический смысл площади области между кривой f_i и хордой, т. е. разницы энергий между реальной и линеаризированной характеристиками) непрерывны, также монотонны (вообще говоря, не обязательно строго), стремятся к 0 при $x_i \rightarrow 0$ и сюръективно отображают соответственно $(0,+\infty)$ и $(0,-\infty)$ на $(0,+\infty)$. Доопределим также функции $a_{\text{MEFR}ii+}(x_i)$ и $a_{\text{MEFR}ii-}(x_i)$ непрерывно в нулевой точке: $a_{\text{MEFR}ii+}(0) = f'_{i+}(0), a_{\text{MEFR}ii-}(0) = f'_{i-}(0).$

Модификация EFR (MEFR) будет состоять в том, что, вместо замены на каждом шаге итерации характеристик ветвей $f_i(x_i)$ линейными функциями, будем заменять их кусочно-линейными функциями с разным уклоном для положительной и отрицательной полуосей. А именно для P_{var}^* кусочно-линейную функцию $f_{\text{MEFR}i}^*(x_i)$ определим следующим образом (рис. 3):

На положительной полуоси $x_i \ge 0$:

при $x_i^* = 0$ $f_{\text{MEFR}i}^*(x_i) = f_i(0) + a_{\text{MEFR}ii+}(0)x_i$; (17) при $x_i^* > 0$ $f_{\text{MEFR}i}^*(x_i) = f_i(0) + a_{\text{MEFR}ii+}(x_i^*)x_i$; (18) при $x_i^* < 0$ $f_{\text{MEFR}i}^*(x_i) = f_i(0) + a_{\text{MEFR}ii+}(x_i^{**})x_i$. (19) На отрицательной полуоси $x_i \le 0$: при $x_i^* = 0$ $f_{\text{MEFR}i}^*(x_i) = f_i(0) + a_{\text{MEFR}ii-}(0)x_i$; (20) при $x_i^* > 0$ $f_{\text{MEFR}i}^*(x_i) = f_i(0) + a_{\text{MEFR}ii-}(x_i^{**})x_i$; (21)

при
$$x_i^* < 0 f_{\text{MEFR}i}^*(x_i) = f_i(0) + a_{\text{MEFR}ii-}(x_i^*)x_i$$
. (22)

При этом $a_{\text{MEFR}ii+}(x_i^{**})$ и $a_{\text{MEFR}ii-}(x_i^{**})$ в (19) и (21) находятся соответственно из условий равенства площадей между оригинальной характеристикой ветви и двумя хордами

$$I_{\text{MEFR}ii+}\left(x_{i}^{**}\right) = I_{\text{MEFR}ii-}\left(x_{i}^{*}\right);$$
(23)

$$I_{\text{MEFR}ii-}\left(x_{i}^{**}\right) = I_{\text{MEFR}ii+}\left(x_{i}^{*}\right). \tag{24}$$

При этом, хотя x_i^{**} и может определяться в принципе неоднозначно (когда $a_{\text{MEFR}ii\pm}(x_i)$ и $I_{\text{MEFR}ii\pm}(x_i)$ не строго монотонны), $a_{\text{MEFR}ii+}(x_i^{**})$ и $a_{\text{MEFR}ii-}(x_i^{**})$ определяются однозначно и, более того, непрерывны по x_i^{*} .

Определение x_i^{**} по x_i^* из (23), (24) может выполняться численными методами, но для простых видов функций $f_i(x_i)$ это можно сделать и аналитически. Например, для часто используемого так называемого "метода 2K", когда $f_i(x_i) = f_i(0) + K_{1+}x_i + K_{2+}x_i |x_i|$ при $x_i \ge 0$ и $f_i(x_i) =$ $= f_i(0) + K_{1-}x_i + K_{2-}x_i |x_i|$ при $x_i \le 0$, явным интегрированием легко получаем, что $x_i^{**} = -x_i^* (K_{2+}/K_{2-})^{1/3}$ при $x_i^* > 0$ и $x_i^{**} = -x_i^* (K_{2-}/K_{2+})^{1/3}$ при $x_i^* < 0$.

Отображение M_{MEER} : $\mathbb{R}^{N_Q} \to \mathbb{R}^{N_Q}$, ставящее в соответствие произвольному вектору узловых давлений P_{var}^* вектор давлений в узлах V_Q , полученный решением системы уравнений гидравлической цепи (1), (2) с заменой характеристик ветвей на описанные выше кусочно-линейные (для которых решение КЗП также существует и единственно согласно [18]), очевидно, является непрерывным отображением с единственной неподвижной точкой, соответствующей решению исходной КЗП. Рассчитать $M_{\text{MEFR}}(P_{var}^{*})$ теоретически можно всегда, решив 2^{NE} линейных систем, соответствующих всей комбинации различных линейных кусков характеристик ветвей, и выбрав то единственное решение, знаки расходов по ветвям которого отвечают выбранной комбинации линейных характеристик ветвей. Практически, разумеется, этого обычно делать не требуется, достаточно сначала решить линейную систему с характеристиками, соответствующими знакам потоков для P_{var}^* (т. е. фактически рассчитать $M_{\rm EFR}(P_{var}^{*}))$, а далее при необходимости рассчитывать ту же систему с другими линейными характеристиками тех ветвей, где поток меняет знак.

Аналогично тому, как это сделано для ветвей с симметричными характеристиками, можно показать, что (благодаря выбору x_i^{**}) $\Phi_{MEFR}^{*'}$ всегда полностью мажорирует Φ , а потому для любой точки, кроме решения КЗП, $\Phi(M_{MEFR}(P_{var})) < \Phi(P_{var})$. Применяя теорему 1, получаем, что метод MEFR сходится к решению КЗП при любых начальных условиях.

Поскольку для тех точек, для которых $M_{\rm MEFR}$ не меняет знак расхода по ветвям, он совпадает с $M_{\rm EFR}$, получаем также, что и для "несимметричных" ветвей, если для итераций метода EFR знаки расходов перестают меняться, то эти итерации сходятся к решению КЗП.

Наконец, если для решения КЗП все расходы по ветвям отличны от нуля, то всегда можно найти такое $C > \min \Phi$, что все точки с $\Phi \le C$ имеют те же знаки расходов по ветвям, что и решение. Для начального приближения из этой окрестности решения итерации методов EFR будут совпадать с итерациями методом MEFR и, следовательно, будут сходиться к решению КЗП.

Автор выражает глубокую благодарность Леониду Александровичу Дугинову и Михаилу Хаимовичу Розовскому, которые привлекли внимание автора к методу EFR и поставили перед ним интересную задачу доказать его сходимость. Автор также признателен М.Х. Розовскому за ценные замечания по тексту статьи.

СПИСОК ИСТОЧНИКОВ

1. Duginov L., Rozovskiy M., Korelstein L. A method of analysis of complex hydraulic networks // E3S Web of Conf. – 2020. – Vol. 219. Mathematical Models and Methods of the Analysis and Optimal Synthesis of the Developing Pipeline and Hydraulic Systems 2020, Online, Oct. 16–22, 2020. – P. 01002. – DOI: 10.1051/e3sconf/202021901002

2. Лобачев В.Г. Новый метод увязки колеи при расчете водопроводных сетей // Санитарная техника. – 1934. – $N_{2} 2. - C. 8-12.$ 3. Cross H. Analysis of flow in networks of conduits or conductors // University of Illinois Bulletin. - 1936. - No. 286. Engineering Experiment Station. – 36 p. 4. Сухарев М.Г., Ставровский Е.Р. Расчеты систем транспорта газа с помощью вычислительных машин. – М.: Недра, 1971. – 206 с. 5. Меренков А.П., Хасилев В.Я. Теория гидравлических цепей. – М.: Наука, 1985. – 278 с. 6. Wood D.J., Charles C.O.A. Hydraulic network analysis using linear theory // J. of the Hydraulics Division. – 1972. – Vol. 98, Issue 7. – P. 1157–1170. – DOI: 10.1061/JYCEAJ.0003348 7. Epp R., Fowler A.G. Efficient code for steady state flows in networks // J. of the Hydraulics Division. -1970. - Vol. 96, Issue 1. - P. 43-56. -DOI: 10.1061/JYCEAJ.0002316 8. Martin D.W., Peters G. The application of Newton's method to network analysis by digital computers // J. of the Institute of Water Engineers. - 1963. - Vol. 17. - P. 115-129. 9. Todini E., Pilati S. A gradient algorithm for the analysis of pipe networks // Computer Applications in Water Supply. Vol. 1. System analysis and simulation. – London: John Wiley & Sons, 1988. - P. 1-20. 10. Сухарев М.Г. Уточненная формализация задач анализа гидравлических цепей // Трубопроводные системы энергетики: Управление развитием и функционированием. - Новосибирск: Наука, 2004. - C. 15-24. 11. Todini E. A Unifying View on the Different Looped Pipe Network Analysis Algorithms // Computing and Control for the Water Industry / R. Powell, K.S. Hindi (eds). -Baldock, UK: Research Studies Press Ltd, 1999. -P. 63-80. 12. Reformulated Co-Tree Flows Method Competitive with the Global Gradient Algorithm for Solving Water Distribution System Equations / S. Elhay, A.R. Simpson, J. Deuerlein [et al.] // J. of Water Resources Planning and Management. - 2014. -Vol. 140, Issue 12. - DOI: 10.1061/(ASCE)WR.1943-5452.0000431 13. Alvarruiz F., Martinez-Alzamora F., Vidal A.M. Improving the Efficiency of the Loop Method for the Simulation of Water Distribution Systems // J. of Water Resources Planning and Management. - 2015. - Vol. 141, Issue 10. - DOI: 10.1061/(ASCE)WR.1943-5452.0000539 14. Хасилев В.Я. Линейные и линеаризованные преобразования схем гидравлических цепей // Изв.

АН СССР. Энергетика и транспорт. – 1964. – № 2. – *С.* 231–243.

15. Хасилев В.Я. Элементы теории гидравлических цепей // Изв. АН СССР. Энергетика и транспорт. – 1964. – № 1. – С. 61–88. 16. Баранчикова Н.И., Епифанов С.П., Зоркальцев В.И. Неканоническая задача потокораспределения с заданными напорами и отборами в узлах // Вода и экология: проблемы и решения. – 2014. – № 2(58). – С. 31–38.

 Новицкий Н.Н. Расчет потокораспределения в гидравлических цепях на базе их линеаризации узловыми моделями секущих и хорд // Изв. РАН. Энергетика. – 2013. – № 6. – С. 56–69.

 Епифанов С.П., Зоркальцев В.И. Приложение теории двойственности к моделям потокораспределения
 // Вычислительные технологии. – 2009. – Т. 14, № 1. – С. 67–79.

19. Idelchik I.E. Handbook of Hydraulic Resistance. – 4th Edition Revised and Augmented. – New York: Begell House, 2008. – 861 p.

20. Korelstein L. Hydraulic networks with pressure-dependent closure relations, under restrictions on the value of nodal pressures. Maxwell matrix properties and monotonicity of flow distribution problem solution // E3S Web Conf. – 2019. – Vol. 102. Mathematical Models and Methods of the Analysis and Optimal Synthesis of the Developing Pipeline and Hydraulic Systems 2019, Irkutsk, Russia, June 16–22, 2019. – P. 01005. – DOI: 10.1051/e3sconf/201910201005

SPISOK ISTOChNIKOV

1. Duginov L., Rozovskiy M., Korelstein L. A method of analysis of complex hydraulic networks // E3S Web of Conf. – 2020. – Vol. 219. Mathematical Models and Methods of the Analysis and Optimal Synthesis of the Developing Pipeline and Hydraulic Systems 2020, Online, Oct. 16–22, 2020. – P. 01002. – DOI: 10.1051/e3sconf/202021901002

2. Lobachev V.G. Novyy metod uvyazki kolets pri raschete vodoprovodnykh setey // Sanitarnaya tekhnika. – 1934. – № 2. – S. 8–12.

3. Cross H. Analysis of flow in networks of conduits or conductors // University of Illinois Bulletin. – 1936. – No. 286. Engineering Experiment Station. – 36 p.

4. Sukharev M.G., Stavrovskiy E.R. Raschety sistem transporta gaza s pomoshch'yu vychislitel'nykh mashin. – M.: Nedra, 1971. – 206 s.

5. Merenkov A.P., Khasilev V.Ya. Teoriya gidravlicheskikh tsepey. – M.: Nauka, 1985. – 278 s.

6. Wood D.J., Charles C.O.A. Hydraulic network analysis using linear theory // J. of the Hydraulics Division. – 1972. – Vol. 98, Issue 7. – P. 1157–1170. – DOI: 10.1061/JYCEAJ.0003348 7. Epp R., Fowler A.G. Efficient code for steady state flows in networks // J. of the Hydraulics Division. – 1970. – Vol. 96, Issue 1. – P. 43–56. – DOI: 10.1061/JYCEAJ.0002316 8. Martin D.W., Peters G. The application of Newton's method to network analysis by digital computers // J. of the Institute of Water Engineers. – 1963. – Vol. 17. – P. 115–129.

9. Todini E., Pilati S. A gradient algorithm for the analysis of pipe networks // Computer Applications in Water Supply. Vol. 1.

10. Sukharev M.G. Utochnennava formalizatsiva zadach S. 61-88. analiza gidravlicheskikh tsepey // Truboprovodnye sistemy 16. Baranchikova N.I., Epifanov S.P., Zorkal'tsev V.I. energetiki: Upravlenie razvitiem i funktsionirovaniem. -Nekanonicheskaya zadacha potokoraspredeleniya s zadannymi Novosibirsk: Nauka, 2004. - S. 15-24. naporami i otborami v uzlakh // Voda i ekologiva: problemv i 11. Todini E. A Unifying View on the Different Looped resheniya. - 2014. - № 2(58). - S. 31-38. Pipe Network Analysis Algorithms // Computing and 17. Novitskiy N.N. Raschet potokoraspredeleniya v Control for the Water Industry / R. Powell, K.S. Hindi (eds). gidravlicheskikh tsepyakh na baze ikh linearizatsii uzlovymi Baldock, UK: Research Studies Press Ltd, 1999. modelyami sekushchikh i khord // Izv. RAN. Energetika. - 2013. P. 63-80. - № 6. - S. 56-69. 12. Reformulated Co-Tree Flows Method Competitive with the 18. Epifanov S.P., Zorkal'tsev V.I. Prilozhenie teorii Global Gradient Algorithm for Solving Water Distribution dvovstvennosti k modelvam potokoraspredeleniva // System Equations / S. Elhay, A.R. Simpson, J. Deuerlein [et al.] Vychislitel'nye tekhnologii. – 2009. – T. 14, № 1. – S. 67–79. // J. of Water Resources Planning and Management. - 2014. -19. Idelchik I.E. Handbook of Hydraulic Resistance. – 4th Vol. 140, Issue 12. - DOI: 10.1061/(ASCE)WR.1943-Edition Revised and Augmented. - New York: Begell House, 5452.0000431 2008. – 861 p. 13. Alvarruiz F., Martinez-Alzamora F., Vidal A.M. Improving 20. Korelstein L. Hydraulic networks with pressure-dependent the Efficiency of the Loop Method for the Simulation of Water closure relations, under restrictions on the value of nodal Distribution Systems // J. of Water Resources Planning and pressures. Maxwell matrix properties and monotonicity of flow Management. - 2015. - Vol. 141, Issue 10. distribution problem solution // E3S Web Conf. - 2019. -DOI: 10.1061/(ASCE)WR.1943-5452.0000539 Vol. 102. Mathematical Models and Methods of the Analysis 14. Khasilev V.Ya. Lineynye i linearizovannye preobrazovaniya and Optimal Synthesis of the Developing Pipeline and skhem gidravlicheskikh tsepey // Izv. AN SSSR. Energetika i Hydraulic Systems 2019, Irkutsk, Russia, June 16-22, 2019. transport. - 1964. - № 2. - S. 231-243. P. 01005. - DOI: 10.1051/e3sconf/201910201005 Информация об авторе: Information about the author:

Леонид Бенционович Корельштейн, канд. физ.-мат. наук, зам. директора

System analysis and simulation. – London: John Wiley & Sons,

1988. – P. 1–20.

Leonid B. Korelstein, PhD (physics-mathematics), Deputy Head of the Director for Research & Development

15. Khasilev V.Ya. Elementy teorii gidravlicheskikh tsepev

// Izv. AN SSSR. Energetika i transport. – 1964. – № 1. –

Статья поступила в редакцию 20.06.2023 г.; одобрена после рецензирования 14.07.2023 г.; принята к публикации 10.11.2023 г.

СЕНТЯБРЯ

2024

Тел.: +7 (495) 514-44-68, 514-58-56; n-q-k.ru

N-G-

ТОПЛИВНО-ЭНЕРГЕТИЧЕСКОГО КОМПЛЕКСА Новые встречи — новые возможности!

Вопросы модернизации нефтеперерабатывающих и нефтехимических мощностей, проблемы взаимодействия с лицензиарами, практика импортозамещения, современные модели управления инвестиционными проектами, стандарты и требования безопасности Награждение лучших производителей оборудования для нефтегазопереработки. Презентация настенной карты инвестиционных проектов в нефтегазовом комплексе.

Модернизация производств для переработки нефти и газа

г. Москва, ул. Тверская, д. 22, отель InterContinental

Нефтегазопереработка