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Abstract. Existence, uniqueness and monotonic behavior of the solution of 

classical flow distribution problem for hydraulic networks with pressure-

dependent closure relations was proved. The closure relation can have very 

general form, restricted only by continuity and monotonicity conditions 

necessary for providing existence, uniqueness and continuity of flow 

distribution problem for each branch. It is shown that network as a whole 

“inherits” monotonicity and continuity of its branches behavior, and this 

provides existence and uniqueness of solution. 

The question of existence and uniqueness of flow distribution always was in focus of interest 

of piping networks researchers ([1], [2], [3]). This problem was studied by Merenkov and 

Hasilev [4], and Suharev [5, 6]. The latest advanced research on the matter were done by 

Epifanov and Zorkaltsev, who prove existence and uniquesness of solution for the most 

general condition on edge closure relations for both classical flow distribution problem [7], 

and some non-classical variants [8, 9, 10, 11]. In all these works the problem was reduced to 

optimization of strictly convex function. 

Nevertheless all mentioned results were obtained for pressure-independent edge closure 

relations. Such assumption is quite reasonable for isothermal incompressible liquid flow, but 

not valid in many cases of real gas flow and especially for gas-liquid flow, fluid properties 

highly depend on pressure. In this case there are no evident way to effectively reduce the 

problem to optimization task [6]. But (as a rule) it is possible to use modified variants of 

classical algorithms for finding solutions for such networks можно эффективно (such 

modified algorithms proposed by Mikhailovsky and Novitsky [12, 13, 14]). But lack of 

mathematically accurate proof of uniqueness and existence of solution remained some filling 

of dissatisfaction – especially because it is known for long time, that in similar problems of 

non-isothermal flow, especially gas-liquid flow, solution can be not unique! 

It found out that for this kind of networks great role is played by properties of 

monotonicity (they were studies in latest researches of Chertkov – see for example [15]). 

Using them, the author managed to prove existence and uniqueness of solution of classical 
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flow distribution problem for very general conditions on pressure-dependent edge closure 

relations, which are direct generalization of Epifanov and Zorkaltsev results [7-11]. 

Already after writing the first variant of the article the author found out that relation 

between monotonicity of network flow distribution solution, and existence and uniqueness 

of the solution was discovered almost 60 years ago first by famous hydraulic network 

researcher Birkghoff and his colleague Kellogg [16], and then in more general form by 

famous mathematician Rheinboldt [17]. The later established it for the most general case of 

«abstract» network in frame of his study of multi-dimensional mappings, correspondent to 

different matrix types. It is very strange, but these results found out to be not noticed by 

hydraulic network specialists (except articles [18, 19] of that time) and unjust forgotten. The 

author hopes that this article will help to restore historical justice and these ideas will became 

natural part of hydraulic network theory. 

1 Problem definition and closure relations 

Let 𝐺 - directed graph with 𝑁𝑉 nodes (node set 𝑉) and 𝑁𝐸 edges (edge set 𝐸). Flow rate 𝑋𝑖 

on edge i is related with start and end pressures 𝑃𝐹𝑖  and 𝑃𝐿𝑖  by closure relation 

 𝑋𝑖 = 𝜑𝑖(𝑃𝐹𝑖 , 𝑃𝐿𝑖) (1) 

Let 𝐴 – incidence matrix of graph 𝐺; Q  - node inflow vector. Balance equations are  

 AX = Q (2) 

Using matrixes 𝐴𝐹 and 𝐴𝐿, correspondent to starting and ending edges  

(𝐴 = 𝐴𝐹 + 𝐴𝐿), vector 𝑃 and vector Φ of functions 𝜑𝑖, (1) can be written as 

 X = Φ(PF, PL),   PF = AF
TP,   PL = −AL

TP (3) 

So we have 𝑁𝑉 + 𝑁𝐸 equations for 2𝑁𝑉 + 𝑁𝐸 unknowns (𝑃, 𝑄 and 𝑋). But equations (2) 

are not independent – for connected graph 𝐺 matrix 𝐴 has rank 𝑁𝑉 − 1, with additional 

equation: 

 ∑ Qi
NV
i=1 =0 (4) 

So for connected graph 𝐺 number of unknown is exceed by 𝑁𝑉 number of independent 

equations, so values of 𝑁𝑉 unknowns have to be set. 

In classical flow distribution problem (CFDP) node pressure 𝑃𝑓𝑖𝑥  is set in 𝑁𝑃 > 0 nodes 

(set 𝑉𝑃) and inflow 𝑄𝑓𝑖𝑥  is set in remaining 𝑁𝑄 = 𝑁𝑉 − 𝑁𝑃 nodes (set 𝑉𝑄); pressures 𝑃𝑣𝑎𝑟  are 

needed to be find in remaining 𝑁𝑄 узлах, plus flow rates 𝑋 and inflows 𝑄𝑣𝑎𝑟  in 𝑁𝑃 nodes 

with set pressure. The latest can be defined using equations (1) and (2), so it is enough to find 

𝑃𝑣𝑎𝑟 . 

For «traditional» hydraulic networks functions 𝜑𝑖 depend only on pressure difference: 

𝑋𝑖 = 𝜑𝑖(𝑃𝐹𝑖 − 𝑃𝐿𝑖). Conditions were defined in [7] for functions 𝜑𝑖 (or invert functions 𝑓𝑖), 

which provide existence and uniqueness of CFDP solution for «traditional» hydraulic 

networks (Conditions A): 1) Continuity; 2) Strict monotonic increase; 3) Definition on all ℝ; 

4) 𝜑𝑖(𝑦) → +∞ when 𝑦 → +∞ and 𝜑𝑖(𝑦) → −∞ when 𝑦 → −∞. 

Condition 2 is necessary for uniqueness of solution; condition 1 and 2 are very natural 

and often fits in engineering practice. While conditions 3) and 4) are convenient mathematical 

extrapolation, which provides to guarantee existence of solution for all set values of pressures  

and inflows – in practice region of possible pressure is restricted – almost always from below 
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(as a minimum, pressures should be positive), but also often by upper limits (by technological 

conditions, strength demands etc), so possible flow rates and inflows values are also 

restricted. So (as noted in [10]) in practice it would be good to have estimations of limit on 

set pressures and inflows, for which CFDP has solution in frame of value restriction on 

arguments of functions 
i  and 

if . But this is a separate task. 

Set of functions, which fit conditions 1)-4), is noted as 𝑍𝑎. It differs from introduced in 

[7-10] set 𝑍 only by lack of conditions of zero pressure losses on zero flow rate. Set 𝑍𝑎 can 

be created from 𝑍 by addition of arbitrary constant. Functions from 𝑍 correspond to passive 

edges, while functions from 𝑍𝑎 also can represent active edges (with level difference, pumps, 

compressors etc). 

Now let define set 𝑍𝑎
2 of allowable pressure-dependent closure relations. It is natural 

generalization of 𝑍𝑎. Function 𝜑 ∈ 𝑍𝑎
2, if (Conditions А2): 1) 𝜑(𝑃𝐹 , 𝑃𝐿) is a continuous 

function of both variables 𝑃𝐹 , 𝑃𝐿; 2) 𝜑(𝑃𝐹 , 𝑃𝐿) strictly decreases on 𝑃𝐿  for any 𝑃𝐹; 3) 

𝜑(𝑃𝐹 , 𝑃𝐿) strictly increases on 𝑃𝐹  for any 𝑃𝐿; 4) 𝜑(𝑃𝐹 , 𝑃𝐿) is defined on all ℝ2; 5) For any 𝑃𝐹  

𝜑(𝑃𝐹 , 𝑃𝐿) → −∞ when 𝑃𝐿 → +∞, 𝜑(𝑃𝐹 , 𝑃𝐿) → +∞ when 𝑃𝐿 → −∞; 6) For any 

𝑃𝐿  𝜑(𝑃𝐹 , 𝑃𝐿) → +∞ when 𝑃𝐹 → +∞, 𝜑(𝑃𝐹 , 𝑃𝐿) → −∞ when 𝑃𝐹 → −∞. 

So set 𝑍𝑎
2 consists of continuous function, which for any 𝑃𝐿  ∈ 𝑍𝑎 as functions of 𝑃𝐹  and 

for any 𝑃𝐹  ∈ −𝑍𝑎 as function of 𝑃𝐿 . Examples of such functions are given in [12-14]. 

Like in case of 𝑍𝑎, conditions 1)-3) are physically natural – while conditions 4)-6) are 

mathematical extrapolation. 

Subset 𝑍2 of set 𝑍𝑎
2 are functions, for which 𝜑(𝑃, 𝑃) = 0 for any 𝑃. Functions from 𝑍2 

represent passive edges, while 𝑍𝑎
2 covers also active ones. 

Note that any pressure-independent closure relation which fits some condition from list 

A, also fits correspondent condition(s) from list A2. So all further results for pressure-

dependent networks also are valid for “traditional” networks. 

Note also, that introduction of function 𝜑(𝑃𝐹 , 𝑃𝐿), which gives unique value of flow rate 

on edge for pair of start and end pressure, is already some assumption. There are (rear) 

situations, when this is not right in practice – for example for centrifugal pumps with non-

monotonic H-Q curve. However flow in this case can be unstable (so called pumping 

pompage).  

2 Auxiliary definitions and properties 

We will need to establish so properties of functions from 𝑍𝑎
2. 

Lets 𝜑 ∈ 𝑍𝑎
2. The equations 𝜑(𝑃𝐹 , 𝑃) − 𝑋 = 0 and 𝜑(𝑃, 𝑃𝐿) − 𝑋 = 0 on 𝑃 define some 

implicit functions 𝑓𝐿(𝑃𝐹 , Х) and 𝑓𝐹(𝑃𝐿 , Х), which calculate end pressure by start pressure and 

flow rate, and vice versa. By definition of 𝑍𝑎
2 these functions are defined on all ℝ × ℝ, 

monotonic on both arguments, and go to infinity when any argument goes to infinity. These 

functions also are continuous on both arguments. This follows from strict monotonicity of 

functions 𝜑(𝑃𝐹 , 𝑃) − 𝑋 and 𝜑(𝑃, 𝑃𝐿) − 𝑋 of 𝑃, and special «non-differential» variant of  

implicit function theorem ([20], [21]). 

Note also, that direct of any edge is important only to correctly write balance equations 

(to assign correct sign to flow rate). The direction of the edge always can be inverted by 

replacing closure relation of inverted edge with 𝜑∗(𝑃𝐹 , 𝑃𝐿) = −𝜑(𝑃𝐿 , 𝑃𝐹). 

E3S Web of Conferences 102, 01004 (2019) https://doi.org/10.1051/e3sconf/201910201004
Mathematical Models and Methods of the Analysis and Optimal Synthesis of the Developing Pipeline and Hydraulic 
Systems 2019

3



 
 

Let 𝐺 – connected graph, on which CFDP is defined. Let define the following operation 

(P-reducing, or 𝑃𝑐𝑢𝑡) – consider all nodes with set pressure, and split all of them with degree 

>1 (Fig.1). As a result we will get 

graph 𝑃𝑐𝑢𝑡(𝐺), in which all nodes 

with set pressure have degree 1 (see 

example on fig.2). Graph 𝑃𝑐𝑢𝑡(𝐺) 

cen be non-connected, let 𝐺𝑖𝑃 – its 

connected subgraphs, and 𝐺𝑖 – 

sungraphs, from which they are 

produced (see example on Fig.2). 

We will call 𝐺𝑖 – P – components of graph 𝐺, and 𝐺𝑖𝑃 – its P-reduced components. Р-

components of graph intersect with each other only by nodes with set pressure, which connect 

them. We will call graph 𝐺∗ P-reduced, if it is connected and 𝑃𝑐𝑢𝑡(𝐺∗) = 𝐺∗. 

It is evident, that to solve CFDP on 𝐺 is the same as to solve it on each of 𝐺𝑖 or 𝐺𝑖𝑃. 

Source data of CFDP influences on solution only locally – i.e. change of set inflow or 

pressure has influence only in P-components, containing specific node with set pressure or 

inflow. For node with set inflow this is the only P-component, node with set pressure can be 

part of several P-components. In other words, set pressure nodes split graph on independent 

parts. 

All P-reduced graphs have special structure (simplifying analysis) – they are separate  

 
 

 

 

 

 

 

 

 

 

 

edges with set node pressures, or connected subgraph with nodes with set inflows and edges 

which connect them, plus connected degree 1 nodes with set pressure. P-components of graph 

have the same structure, the only difference is that nodes with set pressure can have degree 

>1. 

Taking all said above into account, it is convenient to study properties of CFDP solution 

for P-reduced graphs – and then results usually can be easily generalized to any connected 

graph. 

3 Uniqueness and monotonicity of CFDP 

Let Ω ⊆ ℝ - some non-empty open connected set, and all functions 𝜑𝑖 are defined on Ω × Ω. 

Ω can be ℝ, or infinite open interval, or open interval (restricted by low and upper pressure 

boundaries). Let us first consider function 𝜑𝑖, which are strictly monotonic, but not 

necessarily continuous. It found out that this is already enough to guarantee uniqueness and 

monotonicity of CFDP solution. 

Let 𝑃 ∈ Ω𝑁𝑉 – node pressures vector. Then equations (1) and (2) completely define flow 

rates and nodal inflows. We will study how nodal pressures change influence on nodal 

inflows. 

P 

Remaining 

graph 

P 
P P 

Remaining 

graph 

Fig. 1 
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Lemma 1 (about nodal inflows). 

Let 𝐺 – connected graph with strictly monotonic edge closure relations, 𝑃1 and 𝑃2 – nodal 

pressure vectors, 𝑋1, 𝑋2, 𝑄1, 𝑄2 – flow rate and inflow vectors defined by (1) and (2). Let’s 

consider the following sets of nodes: 1) 𝑉+ - set of nodes, for which 𝑃𝑖
2 > 𝑃𝑖

1 (pressure 

increased); 2) 𝑉− - set of nodes, for which 𝑃𝑖
2 < 𝑃𝑖

1 (pressure decreased); 3) 𝑉0 - set of nodes, 

for which 𝑃𝑖
2 = 𝑃𝑖

1 (pressure didn’t change); 4) 𝑉0+ - subset of 𝑉0 nodes, connected with any 

node from 𝑉+, but not connected with any nodes from 𝑉−; 5) 𝑉0− - subset of 𝑉0 nodes, 

connected with any node from 𝑉−, but not connected with any nodes from 𝑉+; 6) 𝑉0± - 

subset of 𝑉0 nodes, connected with both nodes from 𝑉+ and 𝑉−; 7) 𝑉00 - subset of 𝑉0 nodes, 

not connected with any node from 𝑉+ or 𝑉−. 

Then: 1) For any node 𝑣 ∈ 𝑉00 𝑄2(𝑣) = 𝑄1(𝑣) (inflow doesn’t change); 2) For any node 

𝑣 ∈ 𝑉0+ 𝑄2(𝑣) < 𝑄1(𝑣) (inflow decreases); 3) For any node 𝑣 ∈ 𝑉0− 𝑄2(𝑣) > 𝑄1(𝑣) 

(inflow increases); 4) If 𝑉+ ≠ ∅ and 𝑉+ ≠ 𝑉, then ∑ 𝑄2(𝑣)𝑣∈𝑉+ > ∑ 𝑄1(𝑣)𝑣∈𝑉+ ; 5) If 𝑉− ≠
∅ and 𝑉− ≠ 𝑉, then ∑ 𝑄2(𝑣)𝑣∈𝑉− < ∑ 𝑄1(𝑣)𝑣∈𝑉− . 

Note, that it is impossible to say a priory anything about inflows in 𝑉0± nodes. 

Proof of Lemma 1. 

Let 𝑣 – graph node. For simplification we can change directions of connected edges so 

that they all start in 𝑣. According equation (1) inflow 𝑄(𝑣) in 𝑣 is a sum of all flow rates in 

connected edges. 

For 𝑣 ∈ 𝑉00, for all edges connected with 𝑣 end nodal pressures 𝑃𝑖
2 are equal 𝑃𝑖

1, so all 

flow rates also are equal, and 𝑄2(𝑣) = 𝑄1(𝑣). 

If 𝑣 ∈ 𝑉0+, for all edges started in 𝑣 start pressure doesn’t change (𝑃2(𝑣) = 𝑃1(𝑣)), 

while end pressure in end node 𝑣𝐿 does not change (𝑃2(𝑣𝐿) = 𝑃1(𝑣𝐿)) or increases 

(𝑃2(𝑣𝐿) > 𝑃1(𝑣𝐿)). In first case flow rate doesn’t change, in second case it decreases (as 

edge closure relation is monotonic). As 𝑣 ∈ 𝑉0+, there exist at least one edge with decreased 

flow rate. So 𝑄2(𝑣) < 𝑄1(𝑣), which prove 2nd item of lemma. 3rd item proof is similar. 

Let 𝑉+ ≠ ∅ and 𝑉+ ≠ 𝑉. Let us sum all equations (1) for nodes from 𝑉+. In resulting 

sum flow rates on edges connected nodes from 𝑉+, will nullify each other. As 𝑉+ ≠ 𝑉 and 

graph is connected, set of edges, connected nodes from 𝑉+ with other nodes (from 𝑉 ∖ 𝑉+), 

is not empty. For simplicity let’s change their direction if necessary, so all start nodes were 

from 𝑉+, and end ones from 𝑉 ∖ 𝑉+. The sum of all inflows on all 𝑉+ nodes is equal to sum 

of flow rates on edges from 𝑉+ «outside»: ∑ 𝑄(𝑣)𝑣∈𝑉+ = ∑ 𝑋(𝑒𝑣𝑢)𝑣∈𝑉+,𝑢∈𝑉∖𝑉+ . On each of 

such edges transition from 𝑃1 to 𝑃2 increase start node pressure, while end node pressure 

decreases or does not change. As close relation are monotonic, this produces flow rate 

increase on each of the edges, and increase of flow rate sum – and this proves item 4 of the 

lemma. Item 5 can be proved in a similar way. 

Now we will find out CFDP solution properties which follow from closure relations 

monotonicity. 

Theorem 1 (Uniqueness of CFDP solution). 

Let 𝐺 – connected graph with strictly monotonic edge closure relations. Then CFDP 

solution for 𝐺 is unique. 

Proof of Theorem 1. 

In special case, when 𝑁𝑃 = 𝑁𝑉, theorem is obvious. 

Let’s consider case 0 < 𝑁𝑃 < 𝑁𝑉, (i.e. 𝑉𝑃 ≠ ∅ и 𝑉𝑄 ≠ ∅). Let’s suppose that for the same 

sets 𝑉𝑃 and 𝑉𝑄, and the same nodal pressures and inflows there exist 2 different solutions of 

CFDP (noted by indexes 1 and 2). Then this solution should have different vectors of nodal 

pressures. Let’s apply lemma 1. As in 𝑉𝑃 nodes pressures are set, 𝑉+ ⊆ 𝑉𝑄, i.e. 𝑉+ ≠ 𝑉. 

Similar 𝑉− ⊆ 𝑉𝑄, and 𝑉− ≠ 𝑉. If 𝑉+ ≠ ∅, item 4 of lemma 1 gives ∑ 𝑄2(𝑣)𝑣∈𝑉+ >
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∑ 𝑄1(𝑣)𝑣∈𝑉+ . But this is impossible, as 𝑉+ ⊆ 𝑉𝑄, and all inflows in 𝑉𝑄 are set and don’t 

change. So 𝑉+ = ∅. Similar way we can get 𝑉− = ∅. But this means, that 𝑉0 = 𝑉, i.e. all 

nodal pressure of solutions 1 and 2 are equal, so all flow rates and inflows are also equal. 

This proves theorem 1. 

Now let’s study how CFDP solution depends on change of set nodal pressures and inflows 

The following theorem generalizes properties established in [15] for “classical” network, to 

the networks with pressure-dependent closure relations.  

Theorem 2 (Monotonicity of CFDP solution). 

Let 𝐺 – connected graph with strictly monotonic edge closure relations, with 2 CFDP 

(problems 1 and 2) defined with the same non-empty sets 𝑉𝑃 and 𝑉𝑄, and set nodal pressures 

𝑃𝑓𝑖𝑥
(1)

  and 𝑃𝑓𝑖𝑥
(2)

 , and set inflows 𝑄𝑓𝑖𝑥
(1)

  and 𝑄𝑓𝑖𝑥
(2)

, related as 𝑃𝑓𝑖𝑥
(1)

≤ 𝑃𝑓𝑖𝑥
(2)

 и 𝑄𝑓𝑖𝑥
(1)

≤ 𝑄𝑓𝑖𝑥
(2)

, and 

solutions of both problems exist . Let 𝑉𝑃
+ and 𝑉𝑄

+ - node sets with set nodal pressures and 

inflows, for which inequalities are strict. Then: 1) For all P-components of 𝐺, where are nodes 

from 𝑉𝑃
+ or 𝑉𝑄

+, ∀𝑣 ∈ 𝑉𝑄 𝑃2(𝑣) > 𝑃1(𝑣). In other Р-components ∀𝑣 ∈ 𝑉𝑄 𝑃2(𝑣) = 𝑃1(𝑣); 

2) If 𝑁𝑃 = 1 and 𝑉𝑄
+ ≠ ∅, then in the only node 𝑣 with set pressure 𝑄𝑣𝑎𝑟

(1) (𝑣) > 𝑄𝑣𝑎𝑟
(2) (𝑣). 

Otherwise 𝑄𝑣𝑎𝑟
(1) (𝑣) = 𝑄𝑣𝑎𝑟

(2) (𝑣); 3) If 𝑁𝑃 > 1, then 𝑄𝑣𝑎𝑟
(1) (𝑣) > 𝑄𝑣𝑎𝑟

(2) (𝑣) for ∀𝑣 ∈ 𝑉𝑃 ∖ 𝑉𝑃
+ 

from any P-component, containing nodes from 𝑉𝑄
+ ∪ 𝑉𝑃

+. For other ∈ 𝑉𝑃 ∖ 𝑉𝑃
+ 𝑄𝑣𝑎𝑟

(1) (𝑣) =

𝑄𝑣𝑎𝑟
(2) (𝑣); 4) If 𝑁𝑃 > 1, 𝑉𝑄

+ = ∅, 𝑉𝑃
+ ≠ ∅, 𝑉𝑃 ∖ 𝑉𝑃

+ ≠ ∅, then ∑ 𝑄𝑣𝑎𝑟
(1) (𝑣)𝑣∈𝑉𝑃

+ <

∑ 𝑄𝑣𝑎𝑟
(2) (𝑣)𝑣∈𝑉𝑃

+ . 

Proof of Theorem 2. 

It is enough to prove the theorem for each P-component. In those of them, where there 

are no nodes from 𝑉𝑃
+ or 𝑉𝑄

+, CFDP data is the same, so according Theorem 1 the solution is 

the same – and this proves last parts of the theorem items 1 and 3. 

Let 𝐺∗ -P-component with nodes from 𝑉𝑃
+ or 𝑉𝑄

+. We will apply Lemma 1 for it.  

For 𝐺∗ 𝑉𝑃 ≠ ∅ and 𝑉𝑃 ⊆ 𝑉0 ∪ 𝑉+, thus 𝑉− ≠ 𝑉. According item 5 of lemma 1 sum of 

inflows on all nodes from 𝑉− must decrease. But this is impossible - 𝑉− can include only 

nodes with set inflows, where inflows don’t change! Thus 𝑉− = ∅. So all nodes of 𝐺∗ are 

contained in 𝑉0 ∪ 𝑉+. 

Suppose that 𝑉𝑄 ∩ 𝑉0 ≠ ∅. Consider subgraph 𝐺∗∗ of nodes 𝑉𝑄, nodes 𝑉𝑃
+ and edges 

which connect them. As 𝐺∗ is P-component, subgraph 𝐺∗∗ is connected. Then 𝑉𝑄 ∩ 𝑉0+ ≠

∅. But according lemma 1 in nodes 𝑉𝑄 ∩ 𝑉0+ inflows have to decrease – this contradicts the 

theorem conditions. Thus 𝑉𝑄 ∩ 𝑉0 = ∅ и 𝑉𝑄 ⊂ 𝑉+, which proves 1st item of the theorem. 

All above shows that 𝑉0 = 𝑉𝑃 ∖ 𝑉𝑃
+. Further, 𝑉00 = ∅ - otherwise nodes 𝑉00 would not 

be connected with other nodes of 𝐺∗. So 𝑉𝑃 ∖ 𝑉𝑃
+ = 𝑉0+, and according Lemma 1 inflows in 

these nodes decrease, and this proves items 2 and 3. 

Item 4 evidently follows from item 3 and equation (4). 

4 Continuity of CFDP solution 

Now we will add continuity condition to strict monotonicity of functions 𝜑𝑖 and will study 

what additional properties of CFDP solution it brings. 

Note by 𝑌 vector, contained with CFDP source data – first 𝑁𝑃 components – set nodal 

pressures 𝑃𝑓𝑖𝑥 , other 𝑁𝑄 – set inflows 𝑄𝑓𝑖𝑥; 𝑌 ∈ Ω𝑁𝑃 × ℝ𝑁𝑄 . Note by 𝐸 set of 𝑌, for which 

CFDP is solvable. What can we say about 𝐸? 

Theorem 3 (Continuity and monotonicity of CFDP solution). 
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Let 𝐺 – Connected graph with continuous and strictly monotonic edge closure relations. 

Then: 

1. 𝐸 is homeomorphic to Ω𝑁𝑉  (or ℝ𝑁𝑉, what is the same) and thus non-empty, open and 

connected. 

2. All solutions parameter (nodal pressures, flow rates, inflows) are continuous functions of 

source data. 

3. Solution is monotonic on source data: 

a. Pressures in nodes from 𝑉𝑄 strictly increase when set inflows and nodal pressures 

increase in their P-component, and don’t depend on source data in other P-

components. 

b. Inflows in all nodes from 𝑉𝑃 strictly decrease when set inflows increase in their P-

components, and don’t depend on set inflows in other P-components. 

c. Inflow in node from 𝑉𝑃: 

i. Strictly increases with set pressure increases in the same node, if there are other 

nodes in 𝑉𝑃. 

ii. Strictly decreases while set pressures in other nodes increase from the same P-

component. 

iii. Does not change in all other cases. 

Proof of theorem 3. 

Consider mapping Ψ: Ω𝑁𝑉 →  Ω𝑁𝑃 × ℝ𝑁𝑄 , which maps nodal pressure vector 𝑃 to vector 

𝑌, which consists from pressures 𝑃𝑖  in nodes from 𝑉𝑃 and inflows 𝑄𝑖  in nodes from 𝑉𝑄, 

calculated from 𝑃 using equations (1)-(2). In fact mapping Ψ maps vector 𝑃 to source data 

of CFDP for which it is a solution. So 𝐸 =  Ψ(Ω𝑁𝑉) . 
As functions 𝜑𝑖 are continuous, mapping Ψ is also continuous. As functions 𝜑𝑖 are strictly 

monotonic, according theorem 1 this mapping is also injective. So according Brouwer 

invariance of domain theorem, mapping Ψ is homeomorphism, and its image 𝐸 =  Ψ(Ω𝑁𝑉) 

is open and homeomorphic to Ω𝑁𝑉. 

As Ψ is homeomorphism, invert mapping Ψ−1 is continuous on 𝐸. This means that nodal 

pressures continuously depend on source data of CFDP. As functions 𝜑𝑖 are also continuous, 

flow rates and inflows (calculated by equations (1), (2)) also depends continuously on CFDP 

source data. 

3rd item of the theorem directly follows from theorem 2. 

Theorem 4 (CFDP solution existence for intermediate source data). 

Let 𝐺 – connected graph with strictly monotonic and continuous edge closure relations, 

and there is CFDP on 𝐺 with 𝑁𝑄 > 0. 

If 𝑌1 = (𝑃𝑓𝑖𝑥
1 , 𝑄𝑓𝑖𝑥

1 ) ∈ 𝐸, 𝑌2 = (𝑃𝑓𝑖𝑥
2 , 𝑄𝑓𝑖𝑥

2 ) ∈ 𝐸, 𝑃𝑓𝑖𝑥
1 ≤ 𝑃𝑓𝑖𝑥

2 , 𝑄𝑓𝑖𝑥
1 ≤ 𝑄𝑓𝑖𝑥

2 , and for 

(𝑃𝑓𝑖𝑥 , 𝑄𝑓𝑖𝑥) 𝑃𝑓𝑖𝑥
1 ≤ 𝑃𝑓𝑖𝑥 ≤ 𝑃𝑓𝑖𝑥

2  𝑄𝑓𝑖𝑥
1 ≤ 𝑄𝑓𝑖𝑥 ≤ 𝑄𝑓𝑖𝑥

2 , then (𝑃𝑓𝑖𝑥 , 𝑄𝑓𝑖𝑥) ∈ 𝐸 and for CFDP 

solution 𝑃𝑣𝑎𝑟
1 ≤ 𝑃𝑣𝑎𝑟 ≤ 𝑃𝑣𝑎𝑟

2 . 

In other words, if CFDP has is solvable for some “boundary” pressures and inflows, it is 

solvable for intermediate source data. 

Proof of theorem 4. 

Let 𝐾 - set 𝑃𝑓𝑖𝑥
(1)

≤ 𝑃𝑓𝑖𝑥 ≤ 𝑃𝑓𝑖𝑥
(2)

, 𝑄𝑓𝑖𝑥
(1)

≤ 𝑄𝑓𝑖𝑥 ≤ 𝑄𝑓𝑖𝑥
(2)

 in Ω𝑁𝑃 × ℝ𝑁𝑄. In fact we need to 

prove, that 𝐾 ⊆ 𝐸, i.e. 𝐾 ∖ 𝐸 = ∅. Suppose that 𝐾 ∖ 𝐸 ≠ ∅. As 𝐾 is compact, and 𝐸 is open, 

𝐾 ∖ 𝐸 is also compact. So 𝐾 ∖ 𝐸 contains some point 𝑌∗, nearest to 𝑌1. Consider interval 

𝐼∗ = [𝑌1, 𝑌∗], connecting points 𝑌∗, 𝑌1. As 𝑌∗ is the nearest to 𝑌1 point in 𝐾 ∖ 𝐸, all points 

of 𝐼∗, except 𝑌∗, ∈ 𝐸. Consider mapping Ψ−1 on interval [ 𝑌1, 𝑌∗). According theorem 4 it 

is continuous, increases monotonically on all coordinates and upper limited by coordinates 

of Ψ−1(𝑌2). So Ψ−1(𝑌) has some limit 𝑃∗, when 𝑌 → 𝑌∗ on 𝐼∗. Ψ is continuous, so Ψ(𝑃∗) =
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𝑌∗, and 𝑌∗ ∈ 𝐸 – contradiction, which proves 𝐾 ∖ 𝐸 = ∅. Inequality 𝑃𝑣𝑎𝑟
1 ≤ 𝑃𝑣𝑎𝑟 ≤ 𝑃𝑣𝑎𝑟

2  

follows from item 3а of theorem 4. 

5 CFDP solution existence theorem 

Theorem 5 (Existence of CFDP solution). 

Let 𝐺 – connected graph with all edges closure relation from 𝑍𝑎
2, for which CFDP is 

defined. Then solution of such CFDP always exists. 

Proof of theorem 5. 

We will prove the theorem by induction on number of edges 𝑁𝐸 of graph 𝐺. In fact it will 

describe some recursive algorithm for finding the solution, which allows to establish its 

existence. 

The base of induction (𝑁𝐸 = 1). For Graph with one edge (and two nodes), for the case, 

when pressure is set in all nodes, CFDP is solvable by definition. If pressure is set in one 

node and inflow in another one, CFDP solution exists, because finctions 𝑓𝐿 and 𝑓𝐹 for edges 

with closure relations from 𝑍𝑎
2 are defined on all ℝ × ℝ (see section 2). 

The step of induction. Let graph 𝐺 has 𝑁𝐸 > 1 edges and CSFP solution existence is 

proved for all graphs with edges number less than 𝑁𝐸. Consider graph 𝐺′ = 𝑃𝑐𝑢𝑡(𝐺). CSFP 

solution on graph 𝐺 is the same as on 𝐺′. If the latest is non-connected and contains several 

connected subgraphs (P-reduced components), each of them contain < 𝑁𝐸 edges, so on each 

of them CSFP has solution, and union of these solutions gives solution on 𝐺′. 

The case remains when 𝐺′ is connected and is P-reduced. 

Select some node 𝑣′ with set pressure 𝑃𝑓𝑖𝑥(𝑣′) in 𝐺′. This node 

has degree 1 in the graph an is connected by edge 𝑒′ with some 

node 𝑣′′ with set inflows 𝑄𝑓𝑖𝑥(𝑣′′). For further simplification, we 

can change direction of 𝑒′, if necessary, so it starts in 𝑣′ and ends 

in 𝑣′′. Let 𝐺′′ - graph, produced from 𝐺′ by deleting node 𝑣′ and 

edge 𝑒′ (Fig.3). It is connected and has 𝑁𝐸 − 1 edges, so on it any 

CFDP is solvable. There can be 2 cases – 1) 𝐺′ has only one node 

with set pressure (node 𝑣′); 2) 𝐺′ has more than one node with set 

pressure – so 𝐺′′ also contains nodes with set pressure.  
1st case. In this case we can do «direct calculation» of edge 𝑒′. 

From equation (4) we need to have 𝑄(𝑣′) = − ∑ 𝑄𝑓𝑖𝑥(𝑣)𝑣∈𝐺′,𝑣≠𝑣′ . As 𝑣′ has degree 1, let 

take flow rate on 𝑒′ equal to 𝑋(𝑒′) = 𝑄(𝑣′) and calculate pressure in 𝑣′′  using 𝑓𝐿 for 𝑒′: 

𝑃(𝑣′′) = 𝑓𝑒′𝐿 (𝑃𝑓𝑖𝑥(𝑣′), 𝑋(𝑒′)). Set CFDP on 𝐺′′ with the same source data, as on 𝐺′, but 

instead of inflow in 𝑣′′ let set pressure in it. Solution of such CFDP on 𝐺′′ exists, and along 

with set pressure in 𝑣′ will provide solution of original CFDP on 𝐺′. This is evident for all 

nodes, except 𝑣′′. In 𝑣′′ for found solution 𝑄(𝑣′′ ) = − ∑ 𝑄𝑓𝑖𝑥(𝑣) −𝑣∈𝐺′′,𝑣≠𝑣′′ 𝑋(𝑒′) =

− ∑ 𝑄𝑓𝑖𝑥(𝑣) + ∑ 𝑄𝑓𝑖𝑥(𝑣)𝑣∈𝐺′,𝑣≠𝑣′ = 𝑄𝑓𝑖𝑥(𝑣′′)𝑣∈𝐺′′,𝑣≠𝑣′′ . 

2nd case. In this case we will find such pressure 𝑃′′ in 𝑣′′, so CFDP on 𝐺′′ with set 

pressure 𝑃′′ in 𝑣′′, and the same conditions in other nodes of 𝐺′′, as on 𝐺′, in combination 

with flow rate on 𝑒′, correspondent to 𝑃𝑓𝑖𝑥(𝑣′) and 𝑃′′, would provide solution of original 

CFDP on 𝐺′. To do this, we only need to have set inflow in 𝑣′′, i.e. to have 

𝑄𝐺′′ 𝑣𝑎𝑟(𝑣′′ , 𝑃′′) − 𝜑𝑒′(𝑃𝑓𝑖𝑥(𝑣′), 𝑃′′) = 𝑄𝑓𝑖𝑥(𝑣′′), where 𝜑𝑒′  is function 𝜑 for 𝑒′, 

𝑄𝐺′′ 𝑣𝑎𝑟(𝑣′′ , 𝑃′′) - inflow in 𝑣′′ for solution of CFDP on 𝐺′′ with set pressure 𝑃′′ in 𝑣′′ and 

the same condition in other nodes. Consider function 𝑞(𝑃′′):  

𝑞(𝑃′′) = 𝑄𝐺′′ 𝑣𝑎𝑟(𝑣′′ , 𝑃′′) − 𝜑𝑒′(𝑃𝑓𝑖𝑥(𝑣′), 𝑃′′) − 𝑄𝑓𝑖𝑥(𝑣′′) 

𝑣′ 

𝑣′′ 

𝐺′′ 

𝑒′ 

Fig. 3 
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Function −𝜑𝑒′(𝑃𝑓𝑖𝑥(𝑣′), 𝑃′′) of 𝑃′′ is from set 𝑍𝑎. 𝑄𝐺′′ 𝑣𝑎𝑟(𝑣′′ , 𝑃′′) as function of 𝑃′′ is 

defined on all ℝ. According item 2 of theorem 3 it is continuous on 𝑃′′, and according item 

3ci of theorem 3 increases monotonically. Thus, function 𝑞(𝑃′′) also ∈ 𝑍𝑎, so should equal 

0 in some point. This point is the value of 𝑃′′, which we are looking for. 

 

References 

1. B.N. Pshenichny, J. Calc. Mathemathics and Math. Physiscs, 5, 942 (1962) [in Russian] 

2. M. Collins, L. Cooper, R. Helgarson, J. Kennington, L. Leblanc, Management Science, 

24, 747 (1978) 

3. A. Bermudes, J. Gonzalez-Diaz, F.J. Gonzalez-Dieguez, Non-linear analysis: Real 

World Applications, 37, 71(2017) 

4. A.P. Merenkov, V.Y. Hasilev, Theory of Hydraulic Circuits (1985) [in Russian] 

5. M.G. Suharev, Cybernetics, 6, 9 (1969) [in Russian] 

6. M.G. Suharev, Piping Systems of Energetics: Control of development and operation, 15 

(Novosibirsk, Nauka, 2004) [in Russian] 

7. S.P. Epifanov, V.I. Zorkaltsev, Computational Technologies, 14 (1), 67 (2009) [in 

Russian] 

8. S.P. Epifanov, V.I. Zorkaltsev, Sib. Zh. Ind. Math., 13 (4), 15 (2010) [in Russian] 

9. S.P. Epifanov, V.I. Zorkaltsev, Izv. Vyssh. Uchebn. Zaved. Mat., 9, 76 (2010) [in 

Russian] 

10. S.P. Epifanov, V.I. Zorkaltsev, Cybernetics and Systems Analysis, 47(1), 74 (2011) [in 

Russian] 

11. S.P. Epifanov, V.I. Zorkaltsev, D.S. Medvezhonkov, Piping Systems of Energetics. 

Methodical and applied problems of mathematical simulation, 144 (Novosibirsk, Nauka, 

2015) [in Russian] 

12. E.A. Mikhailovsky, Piping Systems of Energetics. Mathematical and computer 

simulation, 34 (Novosibirsk, Nauka, 2014) [in Russian] 

13. N.N. Novitsky, E.A. Mikhailovsky, Proceedings Mathematical models and methods of 

analysis and optimal synthesis of developing piping and hydraulic systems, 57 (Irkutsk, 

ESI SB RAS, 2014) [in Russian] 

14. E.A. Mikhailovsky, N.N. Novitsky, St. Petersburg Polytechnical University J. Physics 

and Mathematics, 1 (2), 120 (2015) [in Russian] 

15. Marc Vuffray, Sidhant Misra, Michael Chertkov,  Monotonicity of Dissipative Flow 

Network Renders Robust Maximum Profit Problem Tractable: General Analysis and 

Application to Natural Gas Flow. https://arxiv.org/abs/1504.02370  

16. Garrett Birkhoff, Bruce Kellogg, Proc. Of Symp. on Generalized Networks, 16, 443 

(Published for Polyt. Inst. Brooklyn, N.Y.,1966) 

17. Werner C. Rheinboldt, J. of Math. Analysis and applications, 32(2), 274 (1970) 

18. T.A. Porsching, SIAM J. Numer. Anal, 6 (3), 437 (1969) 

19. T.A. Porshing, Quarterly of Applied Mathematics, 34 (1), 47 (1976) 

20. K. Jittorntrum, Journal of optimization theory and applications, 25 (4), 575 (1978) 

21. S. Kumagai, Journal of optimization theory and applications, 31 (2), 285 (1980) 

E3S Web of Conferences 102, 01004 (2019) https://doi.org/10.1051/e3sconf/201910201004
Mathematical Models and Methods of the Analysis and Optimal Synthesis of the Developing Pipeline and Hydraulic 
Systems 2019

9

https://arxiv.org/abs/1504.02370

