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Abstract. A simple and reliable iterative solution method of classical 
hydraulic network flow rate distribution problem is described. The method 
is based on chord linearization of inverse branch loss function which keeps 
basic branch properties. It has good speed of convergency which is 
practically independent of initial values. 

1 Introduction 
The article describes hydraulic network flow rate distribution calculation method, success-
fully used from 1972 year (([1], [2], [3]). 

Various methods of solving classical hydraulic network flow rate distribution problem 
have been investigating already during almost a century, starting from Lobachev – Hardy 
Cross method [4, 5]. The most popular in the last time are different variants of iterative 
methods based on Newton-Raphson algorithm, which use derivative linearization of hy-
draulic network equations in different forms: methods of Linear Theory (LT) [8], Loop 
Flow (LP) [6, 7, 9, 10], Nodal Adjustment method (NA) [6, 7, 11, 12], and Global Gradient 
Algorithm (GGA) [13, 14]. The review of these methods can be found in [Ошибка! Ис-
точник ссылки не найден., 16], where their uniform nature is shown. Another recent 
variant of such methods is Reformulated Co-Tree Method (RCTM) [17], combining GGA 
and LP and more effective in some cases (but demanding topological analysis of the net-
work). Further efforts to make LP more effective can be found also in [18]. 

In the same time some “non-Newtonian” approaches were considered based on chord 
or secant network equations linearization. Such methods were originally proposed in [19, 
20] and then in [7], and also mentioned in [21]. Systematic research of such methods was 
done in article [22]. Note that many of such methods found out to be very efficient. 

The method described in this article also belongs to chord linearization type of meth-
ods and was listed (among others) in [22], but was described there as not universal enough 
one because of its linearization problem for zero (or near zero) flow rate branches. And 
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really this problem theoretically exists, but in practice it disappears if laminar flow is taken 
into account in this case. 

2 Method description 
Well known hydraulic network equations of classical flow rate distribution problem can be 
written as 

𝐴�𝑃 = 𝐹(𝑋) (1) 
𝐴𝑋 = 𝑄 (2) 

Where 𝐴 – incidence matrix of the network, 𝑋 – vector of mass flow rates, 𝑄 – node 
mass inflow vector, 𝑃 – vector of node potentials (pressures), 𝐹(𝑋) – vector function, each 
element of which is function of losses on edges. 

It is supposed that node pressures are set in part of nodes (at least one), and inflows 
are defined in remaining nodes. 

The proposed method (called Estimated Flow Rate – EFR) is to replace system (1), (2) 
by similar linear system on each iteration, in which nonlinear vector function 𝐹(𝑋) is re-
placed by linear vector function 𝐹�(𝑋) = 𝐴�𝑋 + 𝐹�, 𝐹� = 𝐹(0), correspondent to chord of  
function 𝐹(𝑋) (or inverse function 𝜑 to it), connecting point of current iteration and zero 
flow rate point. 

Thus, on i-th iteration the linear system to be solved is 
𝐴�𝑃(�) = 𝐴�

(�)𝑋(�) + 𝐹� (3) 
𝐴𝑋(�) = 𝑄 (4) 

Where elements of diagonal matrix 𝐴�
(�) on each iteration are calculated via equation  

𝑎���
(�) = �ℎ�

(���) − 𝐹��� 𝑋��
(���)� ,  (5) 

with estimated flow rate 𝑋��
(���) = 𝜑�ℎ�

(���)�, ℎ(���) = 𝐴�𝑃(���) 
In the seldom case when flow rate on the edge equals zero, and formula (5) is unde-

fined, 𝑎���
(�) =

���
���

(0) should be used instead of (5), with derivative calculated analytically 

or numerically (in order this derivative be non-zero, laminar type of the flow in this case 
should be considered [23]!). 

For typical quadratic losses (according Darcy-Weisbach equation) on passive j-th edge 

𝐹��𝑋�� = 𝜆��𝑋��𝑋�  equation (5) gives 𝑎���
(�) = �𝜆� �ℎ�

(���)�, for general power losses 𝐹��𝑋�� =

𝜆��𝑋��
���

𝑋�  (5) gives 𝑎���
(�) = 𝜆�

� �⁄ �ℎ�
(���)�

��� �⁄
. However, in principle loss function 𝐹(𝑋) 

can be arbitrary function and can be even defined by the table. As this function usually is 
monotonic and smooth enough [23], effective calculation of inverse function on every itera-
tion is not a problem – there are now known many highly effective derivative-free root 
finding algorithms for solving such problems (direct and inverse quadratic interpolation, 
modified Pegasus method [27, 28], Brent method [26] etc. – see survey of such methods in 
[24, 25]), which allow to calculate inverse function with required practical accuracy via 3-4 
iterations. 

3 Method advantages 
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EFR method (as chord linearization method) has linear convergency, but its convergency 
speed is quite good (especially for flow rates) – most often in practice no more than 5-7 
iterations are needed. 

The biggest advantage of the method is its high stability and practical independency of 
initial point. As many years of usage experience showed, EFR allows to set practically any 
initial flow rate and node pressure values, and number of iterations is almost independent of 
these values (initial flow directions on edges can be set also arbitrary – they will be auto-
matically corrected during iterations). Moreover, already after the first iteration node pres-
sure values are usually close enough to the solution, and this minimizes risk of occasional 
«blowout» of node pressures during iterations into zone where the model is not adequate 
(fluid is boiling or condensing, or choked flow occurs). This can be easily explained – on 
each iteration original network is replaced by linear one with similar edge properties – pas-
sive edges remain passive, and active edges have the same head at zero flow rate - so for 
solutions on each iteration the same theorems (proved in [28]) for network solutions in re-
stricted node pressure space is applied, as for original network problem. This advantage of 
EFR allows to apply it also in combination with other methods (for example GGA) to get 
better initial approximation for them. 

The method stability allows also to use it (in combination with decomposition meth-
od) for thermal and hydraulic calculations taking into account dependence of fluid tempera-
ture on pressures and flow rates. 

Finally, the simplicity of the method allows to use it for training of hydraulic network 
analysis foundations for non-specialists. 

4 Example 
Example of multi-looped piping network (transfer-
ring air) is shown on Ошибка! Источник ссылки 
не найден., with edge 1 being part of four loops. 
Each edge contains at least entrance, pipe and exit 
elements taking into account correspondent local or 
friction losses. Air density dependence on pressure is 
also considered. Edges 1 and 4 contain active ele-
ments - fans H1 and H2. Other edges are passive. 

Relative error of flow rate values on different 
iterations are shown in table 1. 

Table 1. Relative error vs iteration number 

Fig. 1. Example of piping network 
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